PARQUET-1854: Properties-driven Interface to
Parquet Encryption Management

Contributors (chronological order): Ryan Blue (Netflix), Gidon Gershinsky (Apple), Xinli Shang (Uber), Maya Anderson (IBM), Gabor
Szadovszky (Cloudera), Tham Ha (Emotiv)

Editor: Gidon Gershinsky (ggershinsky@apple.com)

Overview

Parquet encryption can be activated via configuration properties (such as Hive table properties,
Hadoop configuration).

The “Examples” section below shows a couple of Spark samples that demonstrate the
properties-driven encryption interface.

The implementation of the properties-driven encryption is heavily based on the Key
Management Tools (PARQUET-1373). Since these tools are not specific to the properties-driven
interface, and have a wider applicability, their design is described in a separate document.

Technical approach

Hadoop configuration

In parquet-mr, Hadoop configuration is passed to parquet writers and readers.
The following Hadoop properties allow to activate the properties-driven crypto factory, that in
turn activates and configures encryption (file writing) and decryption (file reading):

Crypto factory

“parquet.crypto.factory.class” - set to

“org.apache.parquet.crypto.keytools.PropertiesDrivenCryptoFactory”

https://issues.apache.org/jira/browse/PARQUET-1854
https://docs.google.com/document/d/1bEu903840yb95k9q2X-BlsYKuXoygE4VnMDl9xz_zhk/edit?usp=sharing

File writing

Mandatory properties
"parquet.encryption.column.keys": list of columns to encrypt, with master key IDs.

(in the form of “<masterKeylD>:<colName>,<colName>;<masterKeylD>:<colName>...")

"parquet.encryption.footer.key": master key ID for footer encryption/signing - protects privacy
and/or integrity of Parquet metadata

"parquet.encryption.kms.client.class": name of class implementing KmsClient interface (see
Key Management Tools). KMS stands for “key management service”.

Optional properties

"parquet.encryption.algorithm": by default, “AES_GCM_V1” is used. This property can be
used to switch to “AES_GCM_CTR_V1”

"parquet.encryption.plaintext.footer": by default, files are written with an encrypted footer.
This property can be used to write files with a plaintext footer (set to “true”). A footer key is still
required to sign/tamper-proof the Parquet metadata (footer).

See Key Management Tools for detailed explanation of the following properties:

"parquet.encryption.key.access.token": authorization token that will be passed to KMS (if
KMS requires tokens)

"parquet.encryption.kms.instance.id": ID of the KMS instance that will be used for encryption
(if multiple KMS instances are available)

"parquet.encryption.kms.instance.url": URL of the KMS instance
"parquet.encryption.double.wrapping": by default, true - data encryption keys (DEKS) are
encrypted with key encryption keys (KEKs), which in turn are encrypted with master keys. If set

to false, DEKSs are directly encrypted with master keys, KEKs are not used.

"parquet.encryption.cache.lifetime.seconds": lifetime of cached entities (key encryption
keys, local wrapping keys, KMS client objects). The default is 600 (10 minutes).

"parquet.encryption.key.material.store.internally": by default, true - the key material is
stored inside Parquet file footers - this doesn’t produce additional files. If set to false, key

https://docs.google.com/document/d/1bEu903840yb95k9q2X-BlsYKuXoygE4VnMDl9xz_zhk/edit?usp=sharing
https://docs.google.com/document/d/1bEu903840yb95k9q2X-BlsYKuXoygE4VnMDl9xz_zhk/edit?usp=sharing

material is stored in separate files in the same folder - this enables key re-wrapping for
immutable Parquet files.

"parquet.encryption.data.key.length.bits": length of data encryption keys (DEKs), randomly
generated by the key management tools. Can be 128, 192 or 256 bits. The default is 128.

"parquet.encryption.kek.length.bits": length of key encryption keys (KEKs), randomly
generated by the key management tools. Can be 128, 192 or 256 bits. The default is 128.

File reading

Requires less properties, since most of them are stored in the file metadata.
The property explanations are identical to the writer-side counterparts.

Mandatory properties

"parquet.encryption.kms.client.class"

Optional properties

"parquet.encryption.key.access.token"

"parquet.encryption.cache.lifetime.seconds"

KMS migration

Files are encrypted using a certain KMS instance/URL. The KMS details are written in files’ key
material / metadata. Sometimes, enterprise use cases require migration of the master keys to
another KMS instance (for high availability / disaster recovery / data migration to another
geolocation). To support these requirements, Parquet key management tools provide the
readers with KMS parameters that override the values stored in the file key material:

"parquet.encryption.kms.instance.id": ID of the KMS instance that will be used for decryption

"parquet.encryption.kms.instance.url". URL of the KMS instance

Hive Metastore properties

Hive Metastore allows users to set serde properties that are converted to Hadoop parameters
and passed to Parquet.

CREATE TABLE my table(name STRING, credit card STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.gl.io.parquet.serde.ParquetHiveSerDe'
WITH SERDEPROPERTIES (
'parquet.encryption.column.keys'='k2: credit card',
'parquet.encryption. footer.key'="'kl")
STORED AS parquet

Examples

Clone the Spark repo and build a runnable distribution (with -pHive option).

A proper demonstration of properties-driven encryption requires deployment of a real KMS
server. We start with a Hello World example, that uses a simple “in-memory KMS” client which
doesn’t need a server. The second example requires a running Vault server. Hashicorp Vault is
an open source KMS.

Both KMS clients are available in this jar - download and add it to the Spark jars folder.

Note: Vault KMS Client is provided only as a sample for KMS Client developers. It should not be
used in production, and is not guaranteed to work if Vault APl changes in the future. “In-memory
KMS” does not demonstrate interaction with an external KMS, and therefore should not be even
considered as a sample for KMS Client developers.

Both examples presume the samp1epr dataframe has a column named “colQ” - which will be
encrypted.

In all examples, the crypto factory should be set to the propertiesdrivenCryptoFactory :

sc.hadoopConfiguration.set ("parquet.crypto.factory.class"

"org.apache.parquet.crypto.keytools.PropertiesDrivenCryptoFactory")

“Hello World”

sc.hadoopConfiguration.set ("parquet.encryption.kms.client.class"
"org.apache.parquet.crypto.keytools.mocks.InMemoryKMS")

// Explicit master keys, base64 (KMS-specific parameter, for InMemoryKMS)

https://spark.apache.org/docs/latest/building-spark.html#building-a-runnable-distribution
https://github.com/hashicorp/vault
https://repo1.maven.org/maven2/org/apache/parquet/parquet-hadoop/1.12.0/parquet-hadoop-1.12.0-tests.jar

sc.hadoopConfiguration.set ("parquet.encryption.key.list"

"k1l:AAECAWQFBgcICQOLDAOODw== , k2 :AAECAAECAAECAAECAAECAA=="
// Write/encrypt
sampleDF.write.
option ("parquet.encryption.footer.key" , "k1").

option ("parquet.encryption.column.keys" , "k2:colQ0").
parquet ("/path/to/table.parquet.encrypted")

// Read/decrypt
val df2 = spark.read.parquet ("/path/to/table.parquet.encrypted")

Hashicorp Vault KMS

sc.hadoopConfiguration.set ("parquet.encryption.kms.client.class"
"org.apache.parquet.crypto.keytools.samples.VaultClient")

// Vault server is set up with

// 1) a Transit secrets engine enabled,

// 2) two master keys in the Transit engine, named “kl1” and “k2” (non-exportable keys)
// 3) a token, and a policy allowing the token bearer to use these keys

// Write/encrypt

sc.hadoopConfiguration.set ("parquet.encryption.key.access.token" , "<vault token>")
sc.hadoopConfiguration.set ("parquet.encryption.kms.instance.url" , "<vault server
url>")

sampleDF.write.
option ("parquet.encryption.footer.key" , "k1").
option ("parquet.encryption.column.keys" , "k2:colO").
parquet ("/path/to/table.parquet.encrypted")

// Read/decrypt
sc.hadoopConfiguration.set ("parquet.encryption.key.access.token" , "<vault token>")
val df2 = spark.read.parquet ("/path/to/table.parquet.encrypted")

	PARQUET-1854: Properties-driven Interface to
	Parquet Encryption Management
	Overview
	Technical approach
	Hadoop configuration
	Crypto factory
	File writing
	Mandatory properties
	Optional properties

	File reading
	Mandatory properties
	Optional properties
	KMS migration

	Hive Metastore properties

	Examples
	“Hello World”
	Hashicorp Vault KMS

