التحولات الكيميائية التي تحدث في منحيين

Transformations chimiques s'effectuant dans les deux sens

1- التفاعلات حمض- قاعدة (تذكير)

1-1- تعاریف

فق حمض و القاعدة	نعبر عن التراف	القاعدة	الحمض	التفاعل حمض-قاعدة
$egin{array}{ c c c c c } \hline BH^+/B & rac{1}{2} & HA/A & H^+ + B & HA & H^+ + A^- & HA & H$	المز دوجة قاعدة/حمض نصف المعادلة	- حسب برونشتد ، هي كل نوع كيميائي قادر على اكتساب بروتون H+ خلال تفاعل كيميائي .	حسب برونشند ، هو كل نوع كيميائي قادر على فقدان بروتون H ⁺ خلال تفاعل كيميائي .	هو تبادل لبروتون $^+$ بين الحمض $^ ^-$ و القاعدة $^ ^ ^-$

1-2: التفاعل حمض قاعدة:

الماء . التجربة انظر الفيديو $HCl_{(g)}$ في الماء . التجربة انظر الفيديو *

$$HCl_{(g)} + H_2O_{(l)} \longrightarrow H_3O_{(aq)}^+ + Cl_{(aq)}^- \qquad \qquad \qquad \qquad \\ H_3O_{(aq)}^+/H_2O_{(l)} \qquad \qquad \qquad \\ HCl_{(g)}/Cl_{(aq)}^- + Cl_{(aq)}^- \qquad \qquad \qquad \\ HCl_{(g)}/Cl_{(aq)}^- + Cl_{(aq)}^- + Cl_{(aq)}^- \qquad \qquad \\ HCl_{(g)}/Cl_{(aq)}^- + Cl_{(aq)}^- + Cl_$$

التجربة انظر الفيديو على الرابط

		<u> </u>
http://www.youtube.com/watch?v=4VuHkHIV_gA	او	http://www.youtube.com/watch?v=V6OA0yHujy
		g

2- تعریف و قیاس pH محلول مائی.

2-1: تعريف:

 $\left[H_{3}O^{^{+}}
ight]$ = $10^{-pH} (mol.l^{-1})$ يعرف pH محلول مائي مخفف بالعلاقة: $pH = -\log \left[H_{3}O^{^{+}}
ight]$ يعرف pH محلول مائي مخفف بالعلاقة: $\left[H_{3}O^{^{+}}
ight]$ في المحلول ب $\left[H_{3}O^{^{+}}
ight]$ في المحلول ب $\left[H_{3}O^{^{+}}
ight]$

2-2: قياس pH محلول مائي:

3- التحولات الكلية و غير الكلية.

2-3: نسبة التقدم النهائي – Taux d'avancement

3-3- النحولات غير الكلية (المحدودة)	3-3- النحو لات الكلية (النامة)
نقول ان التحول غير كلي عندما يصل الى نهايته مع عدم اختفاء	نقول ان التحول كلي عندما يصل الى نهايته مع اختفاء احد المتفاعلات
المتفاعلات كليا	(المتفاعل المحد)
و عنده تتحقق العلاقة $_{ m X_f} <$ و بالتالي $_{ m T} <$ اي $_{ m T} < 100$ المتفاعل	و عنده تتحقق العلاقة $_{ m x_f=x_m}$ و بالتالي $_{ m t=1}$ اي $_{ m t=100}$ المتفاعل
المحد لم يتفاعل كليا	المحد تفاعل كليا

4- حالة توازن مجموعة كيميائية:

- التفسير الميكروسكوبي لحالة التوازن الديناميكي: (خاص بالعلوم الرياضية (أ و ب) و العلوم الفيزيائية)

$$C+D \xrightarrow{(2)} A+B$$
 $A+B \xrightarrow{(1)} C+D$

نتز ايد كميتي C و D و بالتالي يز داد عدد التصادمات بينهما مما يؤدي إلى	تتناقص كميتي A و B ، و بالتالي يتناقص عدد التصادمات الفعالة بينهما
تزايد السرعة $^{\mathcal{V}_2}$ للتفاعل في المنحى العكسي (2).	\mathcal{V}_1 مما يؤدي إلى تناقص السرعة

عندما تتساوى السرعتان $^{\mathcal{V}_2}$ ، فإن كمية المتفاعل A مثلا ، التي تُستهلك في التفاعل المباشر (1) تساوي كميته المتكونة خلال التفاعل في المنحى العكسي (2) ، و هكذا تبقى التراكيز المولية للمجموعة ثابتة خلال الزمن . <mark>"في حالة توازن مجموعة كيميائية ، يكون في كل لحظة عدد الدقائق المختفية بالتفاعل في المنحى المباشر ، مساويا لعدد الدقائق المتكونة بالتفاعل في</mark>

انتهى

Www.AdrarPhysic.Com