
For an n-qubit GHZ state, say we measure the all-X observable, ideally without any noise, the 
measurement distribution would be a uniform superposition of all states with even 1's. There are 
2^(n-1) such even-Hamming-weight states. In practice, our shot count is much lower than 
2^(n-1) when n is large, since we usually just have 10k shots, and it is very easy to have a 
gigantic number of 2^(n-1) for some large n. Therefore, every shot in practice is going to 
produce a unique bitstring with close-to-unit probability. Therefore, our measured bitstring must 
be a uniform distribution over the ‘measured bitstrings'.  
 
Then, as argued and intuitively evident in our Appendix D, readout error mitigation becomes 
ineffective as a statistical method.  
 
Now, unable to mitigate readout errors at all, one can be convinced that to get a measured 
(noisy) bit-string with an odd Hamming weight would be to have an odd number of flips (readout 
errors) on any of the equally probable, even-Hamming-weight (ideal) bit-string. Assuming 
reasonably that for each qubit there is a symmetric 1% misclassification rate (this is a typical, 
and even good, measurement error rate for current-generation hardware), this amounts to 
compute the probability for a binomial variable X~Binomial(n, 0.01) to be odd, i.e., 
Pr(X~Binomial(n, 0.01) is odd). 
 
The probability for a binomial variable X~Binomial(n, p) to be odd is: 

 
The derivation is as follows 

 
 
 
 
 
 
 

 
 
Therefore, for p=0.01, we have 



 

n Probability of odd flips 

1 0.0100 

2 0.0198 

8 0.0774 

32 0.3180 

128 0.4961 

 
For example with n=32, we get about ~31% out of the, say 10k, measured bit-strings which will 
be evaluated to have an expectation value of -1. Hence, the total expectation value will be 0.69 
*(+1) + 0.31*(-1) = 0.38 instead of a perfect 1 for the noiseless case.  
 
This shows why the fidelity estimation of an n-qubit GHZ state by sampling its stabilizers 
[39,50,59,70] underestimates the fidelity much more strongly. 


