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Introduction 
One of the most pressing issues that college students face today is the issue of course load 
difficulty. At Brown, we are lucky to have an enormous amount of data (via the Critical Review) 
that allows students to make informed decisions on which courses to take.  
 
Unfortunately, this kind of information is not available to students at many other colleges. Even 
at Brown, there are many Critical Review feedback forms filled out that don’t contain much of 
the relevant information that students need to make course selection decisions (most 
specifically, the average hours per week). These reviews may include textual data (i.e 
responses to open-ended questions) and selected numerical data (i.e professor ratings) but do 
not include the statistics most relevant to college students today (hours per week).  
 
We felt that this issue is something that could potentially be solved via Deep Learning methods. 
For those feedback forms that do not contain this salient information (average hours per week), 
we may be able to glean out the relevant numerical statistics based purely off of what is 
provided. Taking things one step further, this information could be used by university 
administrators at other colleges who have access to student feedback forms to accurately 
determine the workloads of different classes. Finally, for students, the text and numerical data 
obtained from sites such as “Rate My Professor” (which do not contain metrics for average 
hours of work per week) could be fed into this model as well to obtain this information.  
 
Fundamentally, this problem encompasses a combination of NLP, numerical data analysis, and 
regression. We need to find some way to encode the information obtained from the text sources 
in the Critical Review Feedback forms, and then run a regression to calculate the statistics we 
need.   
 
Methodology 
We implemented three separate multi-channel multi-input models, all of which incorporated 
Natural Language Processing and numerous connected layers. These models were all 
multi-input models (received several disparate sets of inputs), but varied in the model 
architectures and inputs considered. Loss was calculated via the mean squared error 
methodology.  
 
 
 
 



 
Base RNN Model 
This model only used the text answers to the following three questions as input: 

1.​ What types of assignments did this course have? Please check the appropriate boxes 
and provide the number/frequency/any other relevant information about each type of 
course work 

2.​ Is there anything else prospective students should know about this course? 
3.​ Discuss the instructor's teaching style. What was effective and what was not? 

 
The responses to these questions were tokenized, and were lifted into an embedding space. 
Each word was represented by a 100 dimensional embedding vector.  
 
Following the lifting of the textual answers, three separate Gated Recurrent Units (with an 
output size of 100) were used. Each response was divided into a “Window Size” of 125 (any 
shorter sentences were appended with padding). Three separate GRUs were used, as the 
contextual information provided by the text responses are likely to be different because they are 
responses to different questions.  
 
Once the sentences were processed through the Gated Recurrent Units, the resultant vectors 
were processed through 2 dense layers of output size 100 each with a ReLu activation function. 
Each sentence had its own set of 2 dense layers. 
 
Once each sentence was processed through their respective GRUs and dense layers, the 
resultant three output vectors were concatenated. This concatenation was then processed 
through a single dense layer of output size 50 and a ReLu activation function, then a final 
regression dense layer of output size 1 and no activation function. This final output represents 
the model’s predicted “average hours per week” for the course.  
 
RNN with Dropout 
This model was identical to the base RNN model, but included a dropout layer. Once the 
sentences were lifted into the embedding space, a dropout layer with a dropout rate of 0.1 was 
used on each individual embedded sentence matrix.  
 
Multi-Input RNN integrated with Numerical Data 
This was the most complex model that incorporated the most information available. Both 
numerical and natural language data were combined to create an integrated end-to-end 
regressor that integrated the predictive abilities of all attributes included in the dataset.  
 
The natural language processing prior to the concatenation step in this model was identical to 
the prior two model architectures.  
 
In addition to the natural language input, inputs for 15 separate numerical fields were also 
included in this model. These inputs were answers to the following questions: 
 



 
1.​ What fraction of classes did you attend? (0-1) 
2.​ Course Assessment - Assignments (readings, projects, homework, papers) were 

worthwhile (1-5) 
3.​ Course Assessment - Class materials (slides, notes) were useful (1-5) 
4.​ Course Assessment - Course was difficult (1-5) 
5.​ Course Assessment - I learned a lot in this course (1-5) 
6.​ Course Assessment - I enjoyed this course (1-5) 
7.​ Course Assessment - Grading was timely (1-5) 
8.​ Course Assessment - Grading policy was clear and fair (1-5) 
9.​ Course Assessment - Recommended to non-concentrators (1-5) 
10.​Instructor Assessment - Presented material effectively (1-5) 
11.​Instructor Assessment - Used class time efficiently (1-5) 
12.​Instructor Assessment - Encouraged questions and discussion (1-5) 
13.​Instructor Assessment - Passionate about material (1-5) 
14.​Instructor Assessment - Receptive to student needs (1-5) 
15.​Instructor Assessment - Feedback was available and useful (1-5) 

 
The vector of numerical inputs was independently processed through 2 separate dense layers 
(of output size 100 and 50 respectively), each using ReLu activation functions.  
 
Once the numerical inputs had been processed through their dense layers, they were 
concatenated with three separate text inputs after these three inputs had been processed 
through their respective Gated Recurrent Units and two dense layers. This concatenated output 
was then processed through a dense layer (output size 50) with ReLu activation, and then finally 
through a regression layer (output size 1) which had no activation function.  
 
 
Results 
The model was unable to achieve the base accuracy goals set out in the previous check-in, but 
nevertheless still achieved significant improvements in accuracy after being trained. The range 
for average hours in the Critical Review Dataset was from 0 to 35 hours. With random guessing, 
this yields a MSE of over 200. The results from the three models (with all hyperparameters - 
epochs, batch size, learning rate - tuned to their optimal values) are detailed in the table below.  
 
 

Model MSE 

RNN 14.92 

RNN with Dropout 14.96 

Multi-input Model 14.38 

 
 



Based on the results, incorporating dropout in the model did not appear to have any drastic 
effects on accuracy. As expected, incorporating additional numerical information did lead to a 
noticeable improvement in accuracy (MSE dropped by around 0.6). We did expect, however, to 
see a larger improvement in accuracy via incorporation of numerical attributes. These results 
suggest that text based context contained within the open-response questions are much better 
indicators of average workload compared to the numerical responses.  
 
Challenges 
We were faced with numerous challenges throughout the process of model implementation, the 
most significant of which are detailed below. 
 

1.​ We needed to determine a method to handle mixed data (combination of numerical and 
language based data) and multiple inputs, both of which have not been encountered in 
class before. This required us to research and implement parallel pipelines of neural nets 
to handle each input and data type, and determine a method to combine these networks 
into a single output. 

2.​ There were many inconsistencies within the text data. Punctuation and capitalization 
were inconsistent, there were some spelling errors, and overall the data was not very 
clean. We assume that many of the people filling out the form are filling it out 
haphazardly/not making sure that all of their spelling and punctuation is 100% correct. To 
counter this issue we needed to handle dozens of edge cases dealing with punctuation 
and word splitting to ensure that all the sentences were properly tokenized. 

3.​ There was a lack of data in cleaned CSV format. Originally, we only had a little over a 
thousand data points. This was not enough for the model to learn properly on, and MSE 
was much higher. We needed to dig through Critical Archives from the past 5 years and 
scrub all data into one consolidated CSV file to increase the amount of data that our 
model had access to to train from. Eventually, we were able to increase the size of our 
dataset to just under 3,000 individual data points. 

4.​ The model was very sensitive to hyperparameter choices. Hyperparameters (i.e epochs 
and learning rates) that were used for the first two models were not yielding great results 
for the third model. Our model was computationally very intensive to train given the 
sheer number of hyperparameters, and so we needed to utilize a grid-based search 
pattern and run the model for many hours to try to find the optimal set of parameters. 

 
 
 
Reflection 
We feel like our project turned out well. The mean squared error of our results is significantly 
lower than just randomly guessing the number of hours ranging between 0 and 35. An error of 
approximately 3.8 hours is ultimately not too bad in approximating the number of hours needed 
for a class over a week. Our mean square error, however, did not reach our base/target/stretch 
goals of less than 5, 3, and 1 hour respectively. We originally thought that we would have more 
data, however, we lost a lot of responses after cleaning out the data that did not contain all of 



our necessary parameters. With more data points, we believe that our mean square error could 
be further decreased.  
 
Additionally, we were a bit surprised that there was not a substantial difference in error with the 
addition of the numerical data, but that is probably due to the fact that the multi-input RNN 
would require different hyperparameters. We were hesitant to drastically change the 
hyperparameters from method to method, as we wanted a relatively consistent baseline to 
compare the models against and were concerned that we would be able to find the optimum set 
of hyperparameters for one model, but not the others. Further optimization of hyperparameters 
for our numerical model could improve the MSE. Only the learning rate was adjusted compared 
to the other models to prevent overfitting, as we had much more information being passed 
through.  

 
Our original plan for our model was using a transformer, as transformers typically perform better 
than their RNN counterparts, however, we struggled to come up with an idea using the 
transformer model that incorporated the different types of responses (ie the different text 
responses to each question, and for the multi-input RNN, with the numerical ratings of each 
category), so we switched over to a RNN model. 
 
Improvements and Next Steps 
If we were to redo our project, there are a few changes that we would make to our approach. 
The largest improvement we could make would likely be to include more review data in our data 
set, since we believe that the fact we only had about 3,000 reviews limited the capabilities of our 
model. We found that after training for too many epochs, the model started to exhibit 
characteristics of overfitting, specifically getting high accuracy on our training data but failing to 
improve on the testing data. If we had more data, we could train our model for longer without 
risking overfitting, because the model would not be able to adapt to the dataset. Unfortunately, 
we already exhausted the Critical Review’s set of digitized data, so if we were to get more data 
it would have to come from scans of old reviews from before the Critical Review was brought 
online. Translating these scans into trainable data would either need the implementation of an 
entirely new deep learning algorithm to turn scans into digital text, or an extremely large amount 
of man hours manually entering the data. This will likely be a step we look into if this model is 
used in practice by the Critical Review. 
 
Additionally, it would make sense to attempt to build a model entirely using numerical data. If we 
could see that there was also significant predictive capacity in the numerical data, it would help 
explain the surprising result that including it in our model did not significantly improve our 
results. A good result using numerical data would suggest that either our model is not taking 
good advantage of this data, or it is doing so in a way that sacrifices some of the predictivity of 
the text data. If we find that there is little that can be surmised from the numerical data model, it 
could support the conclusion that the data says little about the hours per week a class requires. 
This seems hard to believe, however, because some inputs, like class difficulty, could be 
expected to correlate highly with hours spent per week. 
 



Takeaways  
We feel that the takeaway from our project is that the hours of work for a class can be deduced 
using other data about the class to a certain degree, allowing for some variance to do 
class-specific factors. Our project shows that there is enough information in the written 
responses provided by students to interpret the hourly commitment, and that there is some 
benefit to using the numerical data from the Critical Review as well. With further optimization of 
our hyperparameters and inclusion of more data, we believe we can improve these predictions 
to attain further accuracy. We are pleased that we were able to implement a model that 
combined multiple RNNs for text data usage and a neural network for numerical data, 
something that we were not able to do in class. 
 
This model will hopefully be of much use the Critical Review, and further students at Brown. As 
we saw from the fact that we had to omit many examples, and adapt some incomplete data for 
better use in our model, the problem of incomplete data is a large one for the Critical Review. It 
is not hard to imagine a future, not too far away, where courses that have significant text data 
can still have accurate predictions for the number or hours required per week, which would 
allow students to more easily plan their semesters. It is possible even that further information 
could be deduced from bits and pieces of student reviews. Overall, we believe that our model 
creates the opportunity for much more information about potential classes to be communicated 
to students. 
 


