Q1: Show that set of integers Z is not a group under the binary operation multiplication.

Justify each of the group properties that holds or not.

Marks = 5

Group: Let G be a non-empty set. The ordered pair (G,*) is said to be a group if it satisfies the following

Axioms

1)
$$a * b \in G$$
 $\forall a, b \in G$ (Closure Property)
2) $a * (b * c) = (a * b) * c \forall a, b, c \in G$ (Associative Law)

- 3) For each $a \in G$ There exist an element $e \in G$ Known as the identity element Such that a * e = e * a = a
- 4) For each $a \in G$, there exist an element $a^{-1} \in G$ Known as the inverse of a Such that $a * a^{-1} = a^{-1} * a = e$

Solution:

$$G = Z$$
 , \blacksquare

Is G is a Group or not Group under multiplication:

Closure Property: Multiplication of two integers is always an integer

$$\Rightarrow m, n \in Z \quad \forall m, n \in Z$$

Z is a closed under multiplication

The closure property Hold

Associative Law: $(m.n).l = m.(n.l) \ \forall \ m,n,l \in Z$

 \Rightarrow Z Is Associative under multiplication

Existence of Identity: $m. 1 = m = 1.m \quad \forall m \in \mathbb{Z}$

So, 1 is the multiplicative identity in Z

Inverse: Let $m \in Z$

We know that if $m \in G$

 $m \in G \exists n \in G$ Such that a * b = b * a = e

$$m \cdot \frac{1}{m} = 1 = \frac{1}{m} \cdot m$$
 If $m \in Z$

But $\frac{1}{m}$ is not integer, $\frac{1}{m}$ does not belong to Z

(z,*) Inverse does not exist

So, (z,*) is not a Group under multiplication.

The reason is that (Z, *) is not a group is that most of the elements do not have inverses. Furthermore, addition is commutative, so (Z, +) is an abelian group.