UTN.BA

UNIVERSIDAD TECNOLOGICA NACIONAL
FACULTAD REGIONAL BUENOS AIRES

Ingenieria en Sistemas de Informacion

Delibird

Enviando mensajes sin salir de casa #QuedateEnCasa

Catedra de Sistemas Operativos

Trabajo practico Cuatrimestral

-1C2020 -
Versién 1.4

Version de Cambios

v1.1(23/04/2020) Primera Revision

Se modificé el ejemplo de archivo de configuracion del proceso team.

Aclaramos que todos los tipos de mensaje del team son por suscripcion global en
lugar de suscripcion por id correlativo.

Se agregaron pardmetros faltantes en los mensajes de catch pokemon y new
pokemon del Game boy al Game card.

v1.2 (10/05/2020) Segunda Revision

Se agregaron/modificaron pardmetros faltantes en los mensajes New Pokemon,
Catch Pokemon, Get Pokemon y Appeared Pokemon del Game Boy

Aclaramos el procedimiento para almacenamiento de datos del Broker

Aclaramos algunos puntos en la Planificacion del proceso Team

Se agrego el alpha dentro del archivo de configuracion del Team para el caso de
planificacion por SJF

Se eliminé “Envio de un mensaje a un suscriptor especifico.” dentro de los logs
obligatorios del proceso Game boy

v1.3 (29/05/2020) Tercera Revision

Cambios menores de redaccion en:

o Suscriptor global (P.14)

o Mensajes del gameboy (P. 31)
Se anadio el TIEMPO_RETARDO_OPERACION para la apertura de los archivos en el
file system (P. 19)
Se anadidé documentacion recomendada extra en la descripcion de las entregas para
los hitos 3y 4. (P. 38)
Se arreglo el diagrama de particiones de la P. 12
Se anadié una aclaraciéon con respecto al movimiento de los entrenadores en el
mapa (P. 23)
Se arreglo el ejemplo de directorio del FS de la P. 18
Se arreglaron las fechas de las entregas en base al nuevo calendario académico (P.
37y 38).

v1.4 (15/06/2020) Cuarta Revision

Se quita pdrrafo que da a entender que Buddy System tiene compactacion.

Se actualiza Abstract de Broker para no generar confusiones con respecto con lo
que se debe implementar

Se actualiza la palabra Pokemon a Files en el pdrrafo donde se explica el
funcionamiento de los archivos en el FileSystem

Pagina 2/38

Indice

Version de Cambios 2
Objetivos y Normas de resolucion 6
Objetivos del Trabajo Practico 6
Caracteristicas 6
Evaluacion del Trabajo Practico 6
Deployment y Testing del Trabajo Practico 7
Aclaraciones 7
Abstract 8
Arquitectura del Sistema 9
Proceso Broker 10
Abstract - Message Queue (MQ) 10
Lineamiento e Implementacion 11
Administracién de mensajes 11
Particiones dindmicas con compactacion 12
Procedimiento para almacenamiento de datos 12

Algoritmos para eleccidn de particion libre y eleccion de victima 12

Buddy System 13

Dump de la Caché 13

Tipos de Suscribers 14
Suscriptor global 14

Suscriptor globales por mensajes correlativos 14

Listado de Message Queues 15

Tipos de datos 15

Logs obligatorios 15
Archivo de Configuracion 16
Ejemplo de Archivo de Configuracion 16
Proceso Game Card 17

Péagina 3/38

Tall Grass 17

Metadata 17
Bitmap 18

Files Metadata 18

Datos 18
Lineamiento e Implementacion 19
Archivos Pokemon 19
New Pokemon 20
Catch Pokemon 20
Get Pokemon 21
Archivo de Configuracion 22
Ejemplo de Archivo de Configuracién 22
Proceso Team 23
Lineamiento e Implementacion 23
Planificacién 23
Diagrama de estados de un Entrenador 24
Competicidn y Deadlock 25
Tipo de mensajes 25
Appeared Pokemon 25

Get Pokemon 26

Catch Pokemon 26
Localized Pokémon 26

Caught Pokémon 27

Logs obligatorios 27
Archivo de Configuracion 28
Ejemplo de Archivo de Configuracién 28
Proceso Game Boy 30
Lineamiento e Implementacion 30

Péagina 4/38

Broker - New Pokemon
Broker - Appeared Pokemon
Broker - Catch Pokemon
Broker - Caught Pokemon
Broker - Get Pokemon
Team - Appeared Pokemon
Game Card - New Pokemon
Game Card - Catch Pokemon
Game Card - Get Pokemon
Modo Suscriptor
Logs obligatorios
Archivo de Configuracion
Ejemplo de Archivo de Configuracion
Anexo | - Ejemplos de Flujos
Flujo New Pokemon - Appeared Pokemon
Flujo Get Pokemon - Localized Pokemon
Flujo Catch Pokemon - Caught Pokemon
Anexo Il - Mensajes en memoria
Tamafio de New Pokemon
Tamafio de Get Pokemon
Tamano de Appeared Pokemon
Tamanfo de Catch Pokemon
Tamafio de Caught Pokemon
Descripcion de las entregas
Hito 1: Conexion Inicial
Hito 2: Avance del Grupo
Hito 3: Checkpoint “Presencial” - Via pantalla compartida
Hito 4: Avance del Grupo

Hito 5: Entregas Finales

30
30
31
31
31
31
31
31
31
31
32
32
32
33
33
33
34
35
35
35
35
36
36
37
37
37
38
38

38

Péagina 5/38

Objetivos y Normas de resolucion

Objetivos del Trabajo Practico

Mediante la realizacién de este trabajo se espera que el alumno:

e Adquiera conceptos practicos del uso de las distintas herramientas de programacién e
interfaces (APIs) que brindan los sistemas operativos.

o Entienda aspectos del disefio de un sistema operativo.

e Afirme diversos conceptos tedricos de la materia mediante la implementacién practica de
algunos de ellos.

e Se familiarice con técnicas de programacion de sistemas, como el empleo de makefiles,
archivos de configuracién y archivos de log.

e Conozca con grado de detalle la operatoria de Linux mediante la utilizacidon de un lenguaje de
programacioén de relativamente bajo nivel como C.

Caracteristicas

Modalidad: grupal (5 integrantes +- 0) y obligatorio

Tiempo estimado para su desarrollo: 90 dias

Fecha de comienzo: 03 de Abril

Fecha de primera entrega: 25 de Julio (fecha tentativa a la espera de actualizacién de calendario

académico)

e Fecha de segunda entrega: 1 de Agosto (fecha tentativa a la espera de actualizacion de
calendario académico)

e Fecha de tercera entrega: 22 de Agosto (fecha tentativa a la espera de actualizacién de
calendario académico)

e Lugar de correccién: Laboratorio de Medrano

Evaluacion del Trabajo Practico

El trabajo practico consta de una evaluacién en 2 etapas.

La primera etapa consistira en las pruebas de los programas desarrollados en el laboratorio. Las
pruebas del trabajo practico se subiran oportunamente y con suficiente tiempo para que los alumnos
puedan evaluarlas con antelacién. Queda aclarado que para que un trabajo practico sea considerado
evaluable, el mismo debe proporcionar registros de su funcionamiento de la forma mas clara
posible.

La segunda etapa se dard en caso de aprobada la primera y constard de un coloquio, con el objetivo
de afianzar los conocimientos adquiridos durante el desarrollo del trabajo practico y terminar de
definir la nota de cada uno de los integrantes del grupo, por lo que se recomienda que la carga de
trabajo se distribuya de la manera mas equitativa posible.

Cabe aclarar que el trabajo equitativo no asegura la aprobacidon de la totalidad de los integrantes,
sino que cada uno tendra que defender y explicar tanto tedrica como prdcticamente lo desarrollado y
aprendido a lo largo de la cursada.

La defensa del trabajo practico (o coloquio) consta de la relacion de lo visto durante la teoria con lo

Pagina 6/38

implementado. De esta manera, una implementacién que contradiga a lo visto en clase o lo escrito
en el documento es motivo de desaprobacion del trabajo prdctico.

Deployment y Testing del Trabajo Practico

Al tratarse de una plataforma distribuida, los procesos involucrados podran ser ejecutados en
diversas computadoras. La cantidad de computadoras involucradas y la distribucién de los diversos
procesos en estas sera definida en cada uno de los tests de la evaluacion y es posible cambiar la
misma en el momento de la evaluacidn. Es responsabilidad del grupo automatizar el despliegue de
los diversos procesos con sus correspondientes archivos de configuracidon para cada uno de los
diversos tests a evaluar.

Todo esto estara detallado en el documento de pruebas que se publicard cercano a la fecha de
Entrega Final. Archivos y programas de ejemplo se pueden encontrar en el repositorio de la catedra.

Finalmente, recordar la existencia de las Normas del Trabajo Prictico donde se especifican todos
los lineamientos de como se desarrollara la materia durante el cuatrimestre.

Aclaraciones

Debido al fin académico del trabajo practico, los conceptos reflejados son, en general, versiones
simplificadas o alteradas de los componentes reales de hardware y de sistemas operativos modernos,
a fin de resaltar aspectos de disefio.

Invitamos a los alumnos a leer las notas y comentarios al respecto que haya en el enunciado,
reflexionar y discutir con sus compafieros, ayudantes y docentes al respecto.

Péagina 7/38

https://faq.utnso.com.ar/ntp

Abstract

El objetivo del trabajo practico consiste en desarrollar una solucidn que permita la simulacién de un
sistema distribuido que utiliza el concepto de Colas de Mensajes (o Message Queue).

Los componentes incluidos dentro de la arquitectura del sistema deberan trabajar en conjunto para
la planificacion y ejecucidn de distintas operaciones, entre las que se encuentran, por ejemplo: leery
escribir valores. Las operaciones que conforman estos mensajes estan asociadas y vinculadas al
mundo de Pokémon.

Message Queue (a partir de ahora MQ) es una técnica de software utilizada para la comunicacién
entre procesos (IPC) basada en el concepto de Colas (Queue). En ella, distintos procesos dejan
mensajes y otros los leen de manera asincrénica. De esta manera, se permite el desarrollo de un
sistema completamente distribuido, escalable e independiente.

Los componentes del sistema seran:

Un proceso publisher que ingrese mensajes al sistema (Game Boy).

Un proceso administrador de las Colas de Mensajes (Broker).

Procesos que obtengan los mensajes y planifiquen en funcidn de ellos (Team).

Procesos filesystem que se encarguen de mantener los archivos en el tiempo (Game Card).

Pagina 8/38

Arquitectura del Sistema

Como dijimos anteriormente el sistema consta de 4 mddulos independientes los cuales interactdan
entre si como se muestra en el siguiente diagrama.

Team 1 Team 2 cas Te::m
Broker - GE?;-:G
Game Game Game
Card Card ree Card
1 2]

El Game Boy sera nuestro punto de partida y asimismo, que conocera y permitird el envio de
mensajes a distintos médulos de nuestro sistema.

El proceso Broker sera el encargado de administrar las distintas Colas de Mensajes existentes en el
sistema. Para esto, el mismo mantendra distintas caracteristicas y funcionalidades propias de un
sistema de Cola de Mensajes real, encargandose de mantener, entender y distribuir los distintos
mensajes.

El proceso Team contendra una lista de entrenadores con distintos objetivos de captura de
Pokemons. Nuestro proceso debera planificar a los entrenadores correctamente para que cumplan
sus objetivos cooperativamente dentro de un mapa. De esta manera, los Pokemon seran recursos
qgue los distintos entrenadores deberan atrapar moviéndose por el mapa (apropiarse) y luego
intercambiar en caso de ser necesario (se produzca un deadlock).

Por ultimo, nuestro proceso Game Card serd el encargado de conocer qué Pokemon se encuentran
disponibles dentro del mapa y en qué posicion esta cada uno. Debera mantener distintos permisos y
atribuciones para que solo un proceso pueda acceder al mismo tiempo a él. Al estar este proceso
conectado al Broker y asociarse a una cola de mensajes especifica nos permite generar redundancia
de Game Card y poder replicar con distintas demoras o distintos file system los mismos archivos.

Pagina 9/38

Proceso Broker

Sera el encargado de administrar las colas de mensajes de nuestro sistema. Como tal tendra la
responsabilidad de:

1. Administrar los suscriptores (Teams, Game Cards) asociados a las distintas colas.
Administrar la recepcién, envio y confirmacién de todos los mensajes a los multiples
suscriptores.

3. Mantener un registro de los ultimos mensajes recibidos de las colas indicadas para futuros
suscriptores.

4. Mantener e informar en todo momento los estados de las colas, con sus mensajes y
suscriptores.

Para explicar esto, primero nos enfocaremos en el conceptos técnicos de qué es una Cola de
mensajes (o Message Queue) para luego abordar los aspectos y lineamientos técnicos que tendra
nuestra implementacion.

Abstract - Message Queue (MQ)

Las colas de mensajes son software que permiten la comunicacion entre procesos (IPC) de manera
asincrona, lo que significa que el emisor y el receptor del mensaje no necesitan interactuar con la
cola de mensajes al mismo tiempo.

Cada mensaje colocado en una cola se almacena hasta que el/los destinatarios los recuperen y/o
lean. Las colas de mensajes tienen limites implicitos o explicitos sobre el tamafo de los datos que
pueden ser transmitidos en un solo mensaje y el nimero de mensajes que pueden quedar
pendientes en la cola.

De esta manera, vamos a tener varios procesos que van a funcionar como publicadores (o Publishers)
que van a ser los encargados de dejar mensajes en una Cola de mensajes en particular mientras que
otros procesos van a funcionar como suscriptores (o Suscribers) que van a recibir aquellos mensajes
que lleguen a las colas de mensajes donde estén suscriptos.

QUEUE

® B8 () 0 ®

PUBLISHER SUSCRIBER

En el dmbito de nuestro trabajo practico implementaremos una serie de colas de mensajes que
utilizaremos para distintos propdsitos que explicaremos mas adelante. Dichas colas de mensajes
deben cumplir con los siguientes aspectos técnicos:

1. Durabilidad: Todo mensaje debe permanecer en la cola de mensajes hasta que todos los
Suscribers lo reciban.

Pagina 10/38

2. Notificacién de recepcién: Todo mensaje entregado debe ser confirmado por cada Suscriptor
para marcarlo y no enviarse nuevamente al mismo.

3. Mantenibilidad: Cada cola de mensaje debe mantener su estado y borrar los mensajes que
fueron eliminados de la caché por el algoritmo de reemplazo

4. Asincronismo: La recepcidn y notificacion de mensajes pueden diferir en el tiempo. No deben
notificarse inmediatamente a los componentes suscritos a dicha cola.

Lineamiento e Implementacion

El Broker se encarga, como dijimos anteriormente, de la administracion de MQ de nuestro sistema,
simulando algunos aspectos técnicos de sus implementaciones en la realidad. Por otra parte, se
incorporan conceptos de la materia como administracién de memoria, mensajeria y sincronizacion.

La funcionalidad principal del Broker es la de administrar las distintas colas de mensajes con sus
distintos suscriptores. Para esto, esperara las solicitudes de los distintos mddulos para asociarse a las
distintas colas que él mismo administra. De esta manera, cada uno de los clientes/mddulos se debera
comunicar con él indicando cual es la cola a la que se desea suscribir (en este punto llamaremos al
otro médulo como suscriptor).

Una vez informado esto, el Broker dispondra de una lista de suscriptores por cada cola que el mismo
administre. En otra instancia de tiempo, un mensaje llegara con el destino a dicha cola de mensajes y
el Broker distribuird dicho mensaje a los suscriptores (enviard dicho mensaje a cada uno de los
suscriptores). Al realizar esto se deberd tener en cuenta lo siguiente:

1. Todo mensaje debe ser cacheado dentro de la memoria interna del Broker.
Todo mensaje debe saber a cuales suscriptores fue enviado y si el mismo fue recibido
(confirmacién, ACK 6 acknowledgement).

3. Todo mensaje debe tener un identificador univoco generado por el Broker que debe ser
informado al médulo que generd el mismo.

Esta funcionalidad debera ser implementada por medio de multi-hilos. Esta arquitectura permitira al
Broker poder enviar y transaccionar mensajes en simultaneo a los distintos suscriptores. Cualquier
otra implementaciéon que no esté bajo este concepto sera motivo de desaprobacion del trabajo
practico.

Como dijimos anteriormente, el Broker mantendra una memoria interna en la cual se cachean los
ultimos mensajes recibidos de las distintas colas de mensajes. En el mismo debera registrar:

Identificador Unico del mensaje dentro del sistema.

El tipo de mensaje (a que cola de mensajes pertenece).
Los suscriptores a los cuales ya se envid el mensaje.
Los suscriptores que retornaron el ACK del mismo.

P w N e

Se implementaran dos esquemas de Administracién de Memoria: Particiones dindmicas con
compactacion, y Buddy System (descritos mas adelante). Se elegira por archivo de configuracion cual

Pagina 11/38

estard activa al iniciar la caché. Para ambos, se definird por parametro del Broker el tamafio minimo
de particion y un tamano maximo (que sera el de toda la memoria).

Uno de los requerimientos obligatorios que va a tener el Broker es que una vez inicializado ya no se
podra reservar mas memoria dindmica para guardar los datos. Por lo tanto, toda la memoria que
vaya a ser necesaria para el almacenamiento de los datos debera ser pre-reservadas dindmicamente
en el inicio. Solo se deberd guardar en la porcién de datos el contenido del mensaje dejando el tipo,
identificador y demas flags del mismo en estructuras auxiliares.

Cada vez que un proceso se suscriba a una cola de mensajes debera recibir todos los mensajes
cacheados de dicha cola de mensajes.

En este esquema, se reservard una porcién de memoria por cada valor almacenado, del tamafio
exacto de dicho valor. De esta manera, la cantidad de particiones y su tamafio es variable. Por
ejemplo:

Particion 1 Particion 2 Particion 3
I I I

Dato (2 Kb) | L (0,5 Kb) | Dato (1 Kb) | Dato (3 Kb) | L (0,2 Kb)

L = Particion Libre

En dicho ejemplo, en el caso de almacenar un nuevo valor de 0,2 Kb en el espacio de la primera
particion libre, se tendria una nueva “particién 4” de 0,2 Kb, y al lado una nueva particién libre de 0,3
Kb.

Procedimiento para almacenamiento de datos
1. Se buscard una particién libre que tenga suficiente memoria continua como para contener el

valor. En caso de no encontrarla, se pasara al paso siguiente (si corresponde?, en caso
contrario se pasara al paso 3 directamente).

2. Se compactard la memoria y se realizard una nueva busqueda. En caso de no encontrarla, se
pasara al paso siguiente.

3. Se procedera a eliminar una particién de datos. Luego, si no se pudo encontrar una particion
con suficiente memoria como para contener el valor, se volvera al paso 2 o al 3 segln
corresponda.

Algoritmos para eleccion de particion libre y eleccion de victima
Para seleccionar una particion libre, se deberd implementar los siguientes pares de algoritmos:

! Referencias bibliograficas: seccién 7.2, cap. 7, Stallings 6° ed.; seccién 8.3.2/3, cap. 8, Silberschatz 7° ed.
2 Se debera poder configurar la frecuencia de compactacién (en la unidad “cantidad de busquedas fallidas”). El
valor -1 indicara compactar solamente cuando se hayan eliminado todas las particiones.

Pagina 12/38

e First Fit (primer ajuste) y Best Fit (mejor ajuste).
En el caso de tener que eliminar una particion, los algoritmos a implementar seran:
® FIFO (First In First Out) y LRU (Least Recently Used).

En ambos casos, el algoritmo a utilizar se definira por archivo de configuracién.

En este esquema, se reservara una particion de memoria por cada valor almacenado, del tamafio
potencia de 2 que sea mas cercano a dicho valor. Por ejemplo:

Particilc'm 1 Farticlititn 2
D(128B) | L(128B) D (256 B) L (512 B)

L (N) = Particion Libre de tamario N
D (N) = Particién Ocupada de tamafio N

En dicho ejemplo, en caso de almacenar un nuevo valor de 63 B en el espacio de la primer particion
libre, generaria una nueva “particion 3” de 64 B, y al lado quedaria una nueva particion libre de 64 B.

El procedimiento de almacenamiento de datos sera similar al de las particiones dindmicas, con la
salvedad que no existird la compactaciéon en el algoritmo Buddy System. FIFO y LRU serdn los
algoritmos a implementar para la eleccién de victima en un reemplazo (al igual que en el algoritmo
previo, modificable por archivo de configuracion)

Sera requerimiento del motor de administracion de memoria que éste pueda depositar en un archivo
el estado actual de la memoria en la caché segln el esquema seleccionado. Para solicitar dicho
dump, se enviard una sefial SIGUSR1 que deberd ser manejada e inicializada.

No se pretende ver el contenido de la informacidn almacenada, sino las particiones asignadas/libres,
indicando su direccidon de comienzo y fin, su tamafo en bytes, tiempos de LRU, el tipo de cola de
mensajes que pertenece y su identificador.

Ejemplo:

Dump: 14/07/2012 10:11:12

Particion 1: 0x000 - Ox3FF. [X] Size: 1024b LRU:<VALOR> Cola:<COLA> ID:<ID>
Particion 2: 0x400 - 0x409. [L] Size: 9b

Particion 3: 0x40A - 0x40B. [L] Size: 1b

3 Referencias bibliograficas: seccién 7.2, cap. 7, Stallings 6° ed.;.

Pagina 13/38

Todo mensaje en una implementacién real tiene dos atributos claves: Su identificador y su
identificador correlacional (o correlation id). El primero es un identificador Unico que asigna el
administrador de colas de mensajes (como ya explicamos anteriormente), mientras que el segundo
es el identificador correlacional del mensaje al cual esta asociado.

Esto significa que, si se manda el mensaje A en una cola de mensajes asignandole el identificador “1”,
quienes estén suscritos a esa cola recibiran dicho mensaje junto con su ID. En caso de que algun
suscriptor deba responder este mensaje, enviard un mensaje B a otra cola de mensajes donde se le
asignara un nuevo identificador (por ejemplo “2”), pero el emisor asigna en el valor correlacional el
identificador del mensaje al cual estd respondiendo (en este caso “1”).

De esta manera un modulo puede enviar un mensaje a una cola, y esperar en otra cola de mensajes
la respuesta asociada al primero que envié. Para esto hay que tener en cuenta varias cosas:

e Tiene que existir un protocolo de comunicacién en el cual el proceso que envia el primer
mensaje sabe que tiene que ir a buscar la respuesta a otra cola y el que genere la respuesta
debe también conocer este protocolo.

o El administrador de colas de mensajes debe informar al emisor siempre el identificador del
mensaje para que este Ultimo sepa cual es el mensaje correlativo que debe ir a buscar.

e El administrador de colas de mensajes debe mantener una légica de conocer qué mensajes
con correlativos ya fueron informados en una cola para no generar redundancia en la misma.
Esto quiere decir que si hay varios suscriptores en la cola de mensajes inicial puede haber
varias respuestas al mismo (las cuales deberian ser la misma respuesta) por lo que es el
administrador de cola de mensajes el que sabe que ese mensaje ya fue agregado a la cola
destino y debe ignorarlo.

Una vez explicado esto diremos que tendremos dos tipos de suscriptores:

1. Suscriptores globales.
2. Suscriptores globales por mensajes correlativos.

Suscriptor global
Son suscriptores que se asocian globalmente a una cola de mensajes, lo que implica que todo

mensaje que el Broker reciba a dicha cola de mensajes debera ser enviado al suscriptor.

Cada vez que un proceso se suscriba globalmente a una cola de mensajes, el Broker debera validar en
su memoria principal: si tiene algin mensaje de dicha cola de mensajes y enviarles los mismos.

Para esto, el Broker manejara una lista de procesos dentro de cada mensaje en memoria indicando a
qué procesos ya fue enviado el mismo. Es responsabilidad del grupo interiorizarse y resolver como se
identifica a un proceso especifico frente a una caida y recuperacion.

Suscriptor globales por mensajes correlativos
Son suscriptores globales aquellos que se asocian a una cola de mensajes en espera de mensajes

especificos con identificadores correlativos que él conoce. El Broker envia todos los mensajes que
lleguen a la cola suscrita a este suscriptor vy, este ultimo verificara si es un mensaje que él requiera

Pagina 14/38

(por medio de su identificador correlativo), y de ser asi actuara en accion a el. En caso que no sea un
mensaje que él espera, lo ignorara.

El Broker debera administrar las siguientes colas de mensajes:

NEW_POKEMON
APPEARED_POKEMON
CATCH_POKEMON
CAUGHT_POKEMON
GET_POKEMON
LOCALIZED_POKEMON

Dado que el trabajo practico mantendra seis tipos de mensajes distintos (uno por cada cola de
mensajes), se normalizardn los tipos de datos a utilizar para que el tamafio que ocupe cada uno,
dentro de la memoria principal, sea homogéneo a todos los grupos. El objetivo de esto es otorgar
una manera rapida de verificacién y validacién de lo desarrollado por los alumnos.

Todo dato numérico sera representado por un uint_32, mientras que todo dato de caracteres
dinamicos sera representado por: un uint_32 para indicar su tamafo, seguido de los caracteres que lo
componen. Para ejemplificar cada tipo de mensaje les recomendamos leer el Anexo Il.

Logs obligatorios

Para permitir la verificacién/validacion del médulo se exigird tener un archivo de log especifico e
independiente que contenga la informacién indicada en esta seccidén. No se permite la inclusion de
otros mensajes y exclusion de ninguno de los mismos (la falta o agregado de alguno puede implicar
la desaprobacion del grupo). Dado que el log serd el medio de validacién del trabajo practico se exige
no utilizar la consola como medio de logueo. Cada operacion debe loguearse en una Unica linea
indicando la misma y sus datos, en caso que el grupo desee loguear contenido extra debera realizarlo
en un archivo independiente.

Las acciones a loguear en este archivo son:

Conexién de un proceso al broker.

Suscripcion de un proceso a una cola de mensajes.

Llegada de un nuevo mensaje a una cola de mensajes.

Envio de un mensaje a un suscriptor especifico.

Confirmacién de recepcion de un suscripcién al envio de un mensaje previo.

o Uk WwWNR

Almacenado de un mensaje dentro de la memoria (indicando posicion de inicio de su
particion).

~

Eliminado de una particién de memoria (indicado la posicion de inicio de la misma).

8. Ejecucién de compactacion (para particiones dindmicas) o asociacion de bloques (para buddy
system). En este Ultimo, indicar que particiones se asociaron (indicar posicion inicio de ambas
particiones).

Pagina 15/38

9. Ejecucidn de Dump de cache (solo informar que se solicité el mismo).

Archivo de Configuracion

TAMANO_MEMORIA [Numérico] Tamafio de la memoria en bytes
TAMANO_MINIMO_PARTICION [Numérico] Tamafio minimo de la particién en bytes
ALGORITMO_MEMORIA [String] El tipo de algoritmo de administracion de
memoria que se va a utilizar
(PARTICIONES/BS)
ALGORITMO_REEMPLAZO [String] El tipo de algoritmo de reemplazo de

memoria que se va a utilizar(FIFO/LRU)

ALGORITMO_PARTICION_LIBRE [String] El tipo de algoritmo de seleccion de
particion libre a utilizar(FF/BF)

IP_BROKER [String] El IP del servidor del proceso Broker
PUERTO_BROKER [Numérico] El puerto del servidor del proceso Broker
FRECUENCIA_COMPACTACION [Numérico] Cantidad de busquedas fallidas previa

compactacion

LOG_FILE [String] Path del archivo de log donde se
almacenara el log obligatorio

Queda a decision del grupo el agregado de mas parametros al mismo.

Ejemplo de Archivo de Configuracién
TAMANO _MEMORIA=2048
TAMANO_MINIMO_PARTICION=32
ALGORITMO_MEMORIA=BS
ALGORITMO_REEMPLAZO=FIFO
ALGORITMO_ PARTICION_ LIBRE=FF
IP_BROKER=127.0.0.1
PUERTO_BROKER=6009
FRECUENCIA_COMPACTACION=3

Pagina 16/38

Proceso Game Card

Este mdédulo nos permitira implementar nuestro propio almacenamiento de archivos, que almacene
los datos de los distintos Pokemon que se encuentren en el mapa. Para esto, se debera implementar
el FileSystem TALL_GRASS explicado en los siguientes apartados.

Este proceso, se comunicara con los demds de dos posibles maneras:

1. A través de la conexion con el Broker asocidandose globalmente a la cola de mensajes
NEW_POKEMON, CATCH_POKEMON y GET_POKEMON.

2. A través de un socket de escucha en el cual podra recibir mensajes de las colas de mensajes
mencionadas en el punto anterior.

Cabe aclarar que el Proceso Game Card debe poder ejecutarse sin haber establecido la conexién con
el Broker, es decir, si el Broker se encuentra sin funcionar, o se cae durante la ejecucion, el proceso
Game Card debe seguir procesando sus funciones sin el mismo.

En caso que la conexién no llegue a realizarse o se caiga, el proceso Game Card debera contar con un
sistema de reintento de conexion cada X segundos configurado desde archivo de configuracién. Esto
permitird que, en caso de caerse el Broker, este se inicie posteriormente al mismo; produciendo que
el proceso Game Card pueda asociarse a las colas sin necesidad de reiniciarse.

Tall Grass

El FileSystem Tall Grass es un componente creado con propdsitos académicos para que el alumno
comprenda el funcionamiento basico de la gestién de archivos en un sistema operativo.

La estructura basica del mismo se basa en una estructura de arbol de directorios para representar la
informacion administrativa y los datos de los entidades/Pokemon en formato de archivos. El arbol de
directorios tomara su punto de partida del punto de montaje del archivo de configuracion.

Durante las pruebas no se proveeran archivos que tengan estados inconsistentes respecto del trabajo
practico, por lo que no es necesario tomar en cuenta dichos casos.

Este archivo tendrad la informacién correspondiente a la cantidad de bloques y al tamafio de los
mismos dentro del File System.

Dentro del archivo se encontraran los siguiente campos:

e Block_size: Indica el tamafio en bytes de cada bloque
o Blocks: Indica la cantidad de bloques del File System
e Magic_Number: Un string fijo con el valor “TALL_GRASS”

Ej:

BLOCK_SIZE=64
BLOCKS=5192

Pagina 17/38

MAGIC_NUMBER=TALL_GRASS
Dicho archivo deberd encontrarse en la ruta [Punto_Montaje]/Metadata/Metadata.bin

Bitmap

Este serd un archivo de tipo binario donde solamente existird un bitmap*, el cual representard el
estado de los bloques dentro del FS, siendo un 1 que el bloque estd ocupado y un 0 que el bloque
esta libre.

La ruta del archivo de bitmap es: [Punto_Montaje]/Metadata/Bitmap.bin

Files Metadata

Los archivos dentro del FS se encontrardn en un path compuesto de la siguiente manera:
[Punto_Montaje]/Files/[Nombre Archivo]

Donde el path del archivo incluye el archivo Metadata.
Ej:
/mnt/TALL_GRASS/Files/Pikachu/Metadata.bin
Dentro del archivo Metadata.bin se encontraran los siguientes campos:

e Directory: indica si el archivo en cuestion es un directorio o no (Y/N).

e Size: indica el tamafio real del archivo en bytes (en caso de no ser un directorio).

o Blocks: es un array de numeros que contiene el orden de los bloques en donde se
encuentran los datos propiamente dichos de ese archivo (en caso de no ser un directorio).

e Open: indica si el archivo se encuentra abierto (Y/N).

Ej Directorio:
DIRECTORY=Y
Ej Archivo:

DIRECTORY=N
SIZE=250
BLOCKS=[40,21,82,3]
OPEN=Y

De esta manera podremos formar el siguiente arbol de archivos en donde la metadata dentro del
directorio Files contiene un DIRECTORY con valor Y y Pikachu tiene un metadata con un DIRECTORY
con el valor N.

/mnt/TALL_GRASS/Files/Metadata.bin
/mnt/TALL_GRASS/Files/Pikachu/Metadata.bin

Los datos estardn repartidos en archivos de texto nombrados con un nimero, el cual representara el
numero de bloque. (Por ej 1.bin, 2.bin, 3.bin),

* Se recomienda investigar sobre el manejo de los bitarray de las commons library.

Pagina 18/38

Dichos archivos se encontraran dentro de la ruta:
[Punto_Montaje]/Blocks/[nroBloque].bin
Ej:
/mnt/TALL_GRASS/Blocks/1.bin

/mnt/TALL_GRASS/Blocks/2.bin

Lineamiento e Implementacion

Este proceso gestionard un Filesystem que serd leido e interpretado como un arbol de directorios y
sus archivos utilizando el Filesystem Tall Grass.

A su vez, al iniciar el proceso Game Card se intentara suscribir globalmente al Broker a las siguientes
colas de mensajes:

e NEW_POKEMON
e CATCH_POKEMON
e GET_POKEMON

Al suscribirse a cada una de las colas debera quedarse a la espera de recibir un mensaje del Broker. Al
recibir un mensaje de cualquier hilo se debera:

1. Informar al Broker la recepcion del mismo (ACK).
2. Crear un hilo que atienda dicha solicitud.
3. Volver a estar a la escucha de nuevos mensajes de la cola de mensajes en cuestion.

Todo archivo dentro del file system tendra un valor “OPEN” dentro de su metadata, que indicara si
actualmente hay algln proceso que se encuentra utilizando el mismo. Bajo ningun concepto se
permitira a dos procesos abrir el mismo archivo en simultdneo, en caso que suceda esto se debera
informar el error pertinente por archivo de log o consola y reintentar la operacién luego del tiempo
definido por archivo configuracion.

Cada archivo de tipo pokemon tendra internamente (por cada fila) la lista de posiciones en el mapa
que se encuentra con la cantidad en dicha posicién. De esta manera un posible archivo de pokemon
puede ser:

1-1=10
1-5=1
3-1=2
7-6=1000

La inclusion de una nueva linea o eliminacién depende de la recepcién de los distintos mensajes
desde el Broker.

A continuacion se explicara el funcionamiento que se debe realizar al recibir mensajes de alguna de
estas colas.

Pagina 19/38

Este mensaje cumplird la funcion de agregar la aparicion de un nuevo pokémon al mapa. Tendra
cuatro parametros de entrada:

ID del mensaje recibido.

Pokemon a agregar.

Posicion del mapa.

Cantidad de pokémon en dicha posicidn a agregar.

el

Al recibir este mensaje se deberdn realizar las siguientes operaciones:

1. \Verificar si el Pokémon existe dentro de nuestro Filesystem. Para esto se debera buscar
dentro del directorio Pokemon si existe el archivo con el nombre de nuestro pokémon. En
caso de no existir se deberd crear.

2. \Verificar si se puede abrir el archivo (si no hay otro proceso que lo esté abriendo). En caso
qgue el archivo se encuentre abierto se debera reintentar la operacion luego de un tiempo
definido en el archivo de configuracion.

3. \Verificar si las posiciones ya existen dentro del archivo. En caso de existir, se deben agregar la
cantidad pasada por parametro a la actual. En caso de no existir se debe agregar al final del
archivo una nueva linea indicando la cantidad de pokémon pasadas.

4. Esperar la cantidad de segundos definidos por archivo de configuracién

5. Cerrar el archivo.

6. Conectarse al Broker y enviar el mensaje a la Cola de Mensajes APPEARED_POKEMON con
los los datos:

o ID del mensaje recibido.
o Pokemon.
o Posicion del mapa.

En caso que no se pueda realizar la conexién con el Broker se debe informar por logs y continuar la
ejecucion.

Este mensaje cumplird la funcién de indicar si es posible capturar un Pokemon, y capturarlo en tal
caso. Para esto se recibirdn los siguientes parametros:

1. ID del mensaje recibido.
2. Pokemon a atrapar.
3. Posicidn del mapa.

Al recibir este mensaje se deberan realizar las siguientes operaciones:

1. \Verificar si el Pokémon existe dentro de nuestro Filesystem. Para esto se debera buscar
dentro del directorio Pokemon, si existe el archivo con el nombre de nuestro pokémon. En
caso de no existir se deberd informar un error.

2. \Verificar si se puede abrir el archivo (si no hay otro proceso que lo esté abriendo). En caso
gue el archivo se encuentre abierto se debera reintentar la operacion luego de un tiempo
definido en el archivo de configuracion.

Pagina 20/38

3. \Verificar si las posiciones ya existen dentro del archivo. En caso de no existir se debe informar
un error.

4. En caso que la cantidad del Pokémon sea “1”, se debe eliminar la linea. En caso contrario se
debe decrementar la cantidad en uno.

5. Esperar la cantidad de segundos definidos por archivo de configuracion

6. Cerrar el archivo.

7. Conectarse al Broker y enviar el mensaje indicando el resultado correcto.

Todo resultado, sea correcto o no, debera realizarse conectandose al Broker y enviando un mensaje a
la Cola de Mensajes CAUGHT_POKEMON indicando:

1. ID del mensaje recibido originalmente.
2. Resultado.

En caso que no se pueda realizar la conexién con el Broker se debe informar por logs y continuar la
ejecucion.

Este mensaje cumplird la funcion de obtener todas las posiciones y su cantidad de un Pokémon
especifico. Para esto recibira:

1. Elidentificador del mensaje recibido.
2. Pokémon a devolver.

Al recibir este mensaje se deberdn realizar las siguientes operaciones:

1. \Verificar si el Pokémon existe dentro de nuestro Filesystem. Para esto se debera buscar
dentro del directorio Pokemon, si existe el archivo con el nombre de nuestro pokémon. En
caso de no existir se debera informar el mensaje sin posiciones ni cantidades.

2. \Verificar si se puede abrir el archivo (si no hay otro proceso que lo esté abriendo). En caso

qgue el archivo se encuentre abierto se debera reintentar la operacion luego de un tiempo

definido por configuracién.

Obtener todas las posiciones y cantidades de Pokemon requerido.

Esperar la cantidad de segundos definidos por archivo de configuracién

Cerrar el archivo.

Conectarse al Broker y enviar el mensaje con todas las posiciones y su cantidad.

AN o

En caso que se encuentre por lo menos una posicién para el Pokémon solicitado se debera enviar un
mensaje al Broker a la Cola de Mensajes LOCALIZED_POKEMON indicando:

3. ID del mensaje recibido originalmente.
4. El Pokémon solicitado.
5. Lalista de posiciones y la cantidad de posiciones X e Y de cada una de ellas en el mapa.

En caso que no se pueda realizar la conexién con el Broker se debe informar por logs y continuar la
ejecucion.

Pagina 21/38

Archivo de Configuracion

TIEMPO_DE_REINTENTO_CONEXION [Numérico] Tiempo en segundos en el cual el
proceso debe reintentar conectarse
al broker.

TIEMPO_DE_REINTENTO_OPERACION [Numérico] Tiempo en segundos en el cual el

proceso debe reintentar reabrir el
archivo que se encontraba abierto.

TIEMPO_RETARDO_OPERACION [Numérico] Tiempo en segundos por los cuales el
hilo deberda mantener el archivo
abierto a fin de simular accesos a

disco.
PUNTO_MONTAJE_TALLGRASS [String] Punto en el cual se va a inicializar el
file system.
IP_BROKER [String] El IP del servidor del proceso Broker
PUERTO_BROKER [Numérico] El puerto del servidor del proceso

Broker

Queda a decision del grupo el agregado de mas parametros al mismo.

Ejemplo de Archivo de Configuracion
TIEMPO_DE_REINTENTO_CONEXION=10
TIEMPO _DE_REINTENTO_OPERACION=5
TIEMPO_RETARDO_OPERACION=5
PUNTO_MONTAJE_TALLGRASS=/home/utnso/desktop/tall-grass
IP_BROKER=127.0.0.1
PUERTO_BROKER=6009

Pagina 22/38

Proceso Team

Este proceso sera el encargado de administrar distintos entrenadores “planificandolos” dentro de un
mapa de dos coordenadas. Cada entrenador tendrd objetivos particulares en los cuales deberan
atrapar distintos Pokémon, los cuales serdn configurados por archivos de configuracién. Cabe aclarar
que un entrenador no podrd atrapar mas pokemones de los que indique su objetivo, por ejemplo si
su objetivo es atrapar tres pokemones cualesquiera, no podra atrapar mds de tres, por mds que no
sean los tres que él necesita.

Lineamiento e Implementacion

El objetivo de este proceso es verificar la aparicién de un nuevo Pokémon vy, en caso de que algun
entrenador requiera del mismo para el cumplimiento de su objetivo, planificar al entrenador mas
cercano libre se mueva a dicha posicién a atraparlo. Este proceso se comunicard de dos posibles
maneras:

1. A través de la conexién con el Broker asocidndose globalmente a la cola de mensajes
APPEARED_POKEMON, LOCALIZED_POKEMON y CAUGHT_POKEMON .

2. A través de un socket de escucha en el cual podrd recibir mensajes de apariciones de
Pokémon.

Cabe aclarar que el Proceso Team debe poder ejecutarse sin haber establecido la conexién con el
Broker. Es decir, si el broker se encuentra sin funcionar o se cae durante la ejecucién, el proceso Team
debe seguir procesando sus funciones sin el mismo. Para esto, se contardn con funciones default para
aquellos mensajes que el Proceso Team envie directamente al Broker.

En caso que la conexion no llegue a realizarse o se caiga, el proceso Team deberd contar con un
sistema de reintento de conexién cada X segundos configurado desde archivo de configuracién.

Como dijimos anteriormente, los distintos entrenadores se configuran desde archivo de
configuracidn. Al iniciar el proceso, se deberd crear un hilo por cada entrenador existente y el
proceso Team deberd conocer cudles y qué cantidad de Pokémon de cada especie requiere en total
para cumplir el objetivo global.

Se dice que un proceso Team cumplié su objetivo global cuando todos sus entrenadores obtuvieron
los Pokémon que requieren. Una vez alcanzado el objetivo se debera informar por archivo de log y
por pantalla el resultado alcanzado y finalizar el proceso. Esta finalizacion a diferencia de la teoria no
liberara los recursos obtenidos (Pokémons).

Al aparecer un Pokémon (por cualquiera de los dos métodos antes explicados) sélo se podra
planificar a un entrenador hacia dicha posicién independientemente de cuantos Pokémon de dicha
especie haya en la posicién en la que aparecid.

Para poder planificar un entrenador, se seleccionara el hilo del entrenador mas cercano al Pokémon.
Cada movimiento en el mapa responderd a un ciclo de CPU, y este NO realizard movimientos

Pagina 23/38

diagonales para llegar a la posicién deseada. Para simular mas a la realidad esta funcionalidad, se
deberd agregar un retardo de X segundos configurado por archivo de configuracion.

Para planificar a los distintos entrenadores se utilizardn los algoritmos FIFO, Round Robin y Shortest
job first con y sin desalojo. Para este ultimo algoritmo se desconoce la proxima rafaga, por lo que se
debera utilizar la férmula de la media exponencial. A su vez, la estimacion inicial para todos los
entrenadores serd la misma y debera poder ser modificable por archivo de configuracion

Cada entrenador al iniciar en el sistema entrard en estado New. A medida que el Team empiece a
recibir distintos Pokémon en el mapa despertard a los distintos entrenadores en estado New o en
Blocked (que estén esperando para procesar) pasandolos a Ready. Siempre se planificarda aquel
entrenador que se encuentre sin estar realizando ninguna operacion activamente y, en caso de existir
mas de uno, sea el que mas cerca se encuentre del objetivo.

A medida que cada entrenador se planifique (ya sea para moverse, intercambiar o atrapar un
Pokémon) entraran en estado exec. En el contexto de nuestro trabajo practico no contemplaremos el
multiprocesamiento, esto implica que solo UN entrenador podrd estar en estado Exec en
determinado tiempo.

Cuando un entrenador en estado Exec finalice su recorrido y su ejecucién planificada entrard en un
estado bloqueados. Este estado implica que el entrenador no tiene mas tareas para realizar
momentdneamente.

Cuando un entrenador en estado Exec cumpla todos sus objetivos, pasara a estado Exit. Cuando
todos los entrenadores dentro de un Team se encuentren en Exit, se considera que el proceso Team
cumplié el objetivo global.

Cuando se detecte situaciones de Deadlock deberan estar ambos en estado bloqueado. En este
momento, uno de ellos se pasa a estado Ready con el objetivo que se lo planifique hasta la posicion
del otro. Al llegar a la misma posicion, se debera realizar el intercambio. Cada intercambio ocupara 5
ciclos de CPU. Cada intercambio solo involucra a dos Pokémon.

Al finalizar el intercambio se verificara si alguno esta en condiciones de ir a Exit y de no ser asi irdn
nuevamente a estado bloqueado. A su vez, cada accién de movimiento o envio de mensaje al Broker
consumira un ciclo de CPU.

Cada vez que un entrenador realice una operacién de captura sobre un Pokémon se lo bloqueard a la
espera del resultado no pudiendo volver a operar hasta obtener el mismo.

Adjuntamos un diagrama de estados con lo anteriormente mencionado.

Pagina 24/38

Cabe aclarar que el diagrama antes descrito es similar al visto en la teoria pero agrega transiciones
propias del contexto de este Trabajo practico.

Dado que pueden existir varios procesos Team dentro de nuestro sistema, puede darse la posibilidad
de que varios de ellos requieran una especie de un Pokemon y no exista la misma cantidad de ellos
en el sistema. Este flujo es el esperado y nos permitira probar los distintos algoritmos de planificacion
con sus ventajas y desventajas.

Para comparar los mismos el proceso Team al cumplir su objetivo debera informar:

Cantidad de ciclos de CPU totales.

Cantidad de cambios de contexto realizados.
Cantidad de ciclos de CPU realizados por entrenador.
Deadlocks producidos y resueltos (Spoiler Alert).

W e

Dado que el proceso Team conoce cuantos Pokemon de cada especie necesita globalmente, cuantos
de cada uno ha atrapado y planifica al entrenador mas cercano libre, puede darse el caso que un
entrenador que no requiere una especie de Pokémon termine capturandolo, impidiendo a otro del
mismo equipo que si lo necesita, obtenga el mismo.

En estos casos se producird un caso de Deadlock, en el cual el proceso Team no podra finalizar debido
a que varios de sus entrenadores estan en un estado de Interbloqueo. Es responsabilidad de cada
grupo definir un algoritmo para detectar estos casos para poder resolverlos.

Cuando se detecte dichos casos, se debera bloquear uno de los entrenadores y planificar al/los otro/s
a la posicién del primero para generar un “intercambio” (cada intercambio implica que cada
entrenador entregue un Pokémon al otro uno de ellos).

El proceso Team manejara 5 tipos de mensajes hacia el Broker, todos por suscripcién global por
mensajes correlativos.

Appeared Pokemon
Este mensaje permitird la inclusién en el proceso Team de un nuevo Pokémon en el mapa. Esto se

podra producir de las dos maneras indicadas anteriormente.

Pagina 25/38

Al llegar este mensaje, el proceso Team debera verificar si requiere atrapar el mismo controlando los
Pokemon globales necesarios y los ya atrapados. No se debe poder atrapar mas Pokemon de una
especie de los requeridos globalmente.

En caso que se requiera el mismo, se debe agregar a la lista de Pokémon requeridos y en el momento
que un entrenador se encuentre en estado “Dormido” o “Libre” debe planificarlo para ir a atraparlo.

En este mensaje se recibirdn los siguientes parametros:

e Especie de Pokemon.
® Posicion del Pokemon.

Get Pokemon

Este mensaje se ejecutard al iniciar el proceso Team. El objetivo del mismo es obtener todas las
locaciones de una especie de Pokemon. De esta manera, al iniciar el proceso, por cada especie de
Pokémon requerido se debe enviar un mensaje a la cola de mensajes GET_POKEMON del Broker.

Para esto se deben ejecutar los siguientes pasos:

1. Enviar el mensaje a la cola de mensajes GET_POKEMON indicando cual es la especie del
Pokemon.
2. Obtener el ID del mensaje anterior desde el Broker.

En caso que el Broker no se encuentre funcionando o la conexién inicial falle, se debera tomar como
comportamiento Default que no existen locaciones para la especie requerida.

Catch Pokemon

Este mensaje se ejecutara al intentar atrapar a un Pokémon (cuando un entrenador llegue a la
posicién del mismo). Para esto, se enviard un mensaje a la cola de mensajes CATCH_POKEMON del
Broker.

Para esto, se deben ejecutar los siguientes pasos:

1. Enviar el mensaje a la cola de mensajes CATCH_POKEMON indicando cual es la especie del
Pokémon y la posicion del mismo.

2. Obtener el ID del mensaje anterior desde el Broker y guardarlo a la espera de la llegada de la
respuesta en CAUGHT_POKEMON.

3. Bloquear al entrenador en cuestién a la espera del resultado del mensaje. Este entrenador no
podra volver a ejecutar hasta que se reciba el resultado.

En caso que el Broker no se encuentre funcionando o la conexién inicial falle, se debera tomar como
comportamiento Default que el Pokémon ha sido atrapado con éxito.

Localized Pokémon
El proceso Team se suscribird de manera global a esta cola de mensajes. Al recibir uno de los mismos
deberd realizar los siguientes pasos:

1. \Verificar si ya recibié en algin momento un mensaje de la especie del Pokémon asociado al
mensaje. Si es asi, descarta el mensaje (ya sea Appeared o Localized).

Pagina 26/38

2. En caso de que nunca lo haya recibido, realiza las mismas operatorias que para
APPEARED_POKEMON por cada coordenada del pokemon.

Caught Pokémon
El proceso Team se suscribird de manera global a esta cola de mensajes. Al recibir uno de los mismos
debera realizar los siguientes pasos:

1. Validar si el id de mensaje correlativo del mensaje corresponde a uno pendiente de respuesta
generado por la la instruccion CATCH_POKEMON antes descrita. Si no corresponde a
ninguno, ignorar el mensaje.

2. En caso que corresponda se deberd validar si el resultado del mensaje es afirmativo (se
atrapd el Pokémon). Si es asi se debe asignar al entrenador bloqueado el Pokémon vy
habilitarlo a poder volver operar.

Logs obligatorios

Para permitir la verificacion/validacion del médulo se exigira tener un archivo de log especifico e
independiente que contenga la informacién indicada en esta seccién. No se permite la inclusion de
otros mensajes y exclusion de ninguno de los mismos (la falta o agregado de alguno puede implicar
la desaprobacion del grupo). Dado que el log serd el medio de validacién del trabajo practico se exige
no utilizar la consola como medio de logueo. Cada operacion debe loguearse en una Unica linea
indicando la misma y sus datos, en caso que el grupo desee loguear contenido extra debera realizarlo
en un archivo independiente.

Cabe aclarar que cada proceso Team debera tener su propio archivo de Log. Por lo tanto, dado que
puede darse el caso que se ejecuten varios procesos Team sobre el mismo ordenador se debera
indicar el archivo de log que se utilizara para cada uno por archivo de configuracién.

Las acciones a loguear en este archivo son:

Cambio de un entrenador de cola de planificacion (indicando la razén del porqué).
Movimiento de un entrenador (indicando la ubicacion a la que se movid).
Operacion de atrapar (indicando la ubicacién y el pokemon a atrapar).

Operacidn de intercambio (indicando entrenadores involucrados).

Inicio de algoritmo de deteccion de deadlock.

Resultado de algoritmo de deteccién de deadlock.

Llegada de un mensaje (indicando el tipo del mismo y sus datos).

Resultado del Team (especificado anteriormente).

WX N U A WDNRE

Errores de comunicacién con el Broker (indicando que se realizara la operacién por default).
10. Inicio de proceso de reintento de comunicacién con el Broker.
11. Resultado de proceso de reintento de comunicacién con el Broker.

Pagina 27/38

Archivo de Configuracion

Campo Tipo Descripcion

POSICIONES_ENTRENADORES [Lista de lista] Contiene una lista de las posiciones de los

entrenadores.

POKEMON_ENTRENADORES [Lista de lista] Contiene una lista de los pokemon de cada
entrenadores.

OBJETIVOS_ENTRENADORES [Lista de lista] Contiene una lista de los pokemon que cada

entrenador debe obtener.

TIEMPO_RECONEXION [Numérico] Tiempo en segundos en el cual el proceso
debe reintentar conectarse al broker.

RETARDO_CICLO_CPU [Numérico] Tiempo en segundos para el retardo de la
ejecucién de cada ciclo de cpu

ALGORITMO_PLANIFICACION [String] El tipo de algoritmo de planificacién que se
va a utilizar (FIFO/RR/SJF-CD/SJF-SD)

QUANTUM [Numérico] El valor del quantum en caso de que el
algoritmo utilice RR.

ALPHA [Numérico] El valor del alpha en caso de que el
algoritmo utilice SJF.

IP_BROKER [String] El IP del servidor del proceso Broker

ESTIMACION_INICIAL [Numérico] El valor de la estimacion inicial para SJF en
caso de que aplique

PUERTO_BROKER [Numérico] El puerto del servidor del proceso Broker

LOG_FILE [String] Path del archivo de log donde se almacenard
el log obligatorio

Queda a decisién del grupo el agregado de mas pardmetros al mismo.

POSICIONES_ENTRENADORES=[1]2,3|7,5]|5]
POKEMON_ENTRENADORES=[Pikachu|Squirtle|Pidgey,Squirtle|Charmander,
Bulbasaur]

OBJETIVOS_ ENTRENADORES=[Pikachu|Pidgey|Charmander|Bulbasaur,
Pikachu|Charmander|Charmander,Squirtle|Bulbasaur]
TIEMPO_RECONEXION=30

Pagina 28/38

RETARDO_CICLO_CPU=2
ALGORITMO_PLANIFICACION=RR
QUANTUM=2

ESTIMACION_INICIAL=0
IP_BROKER=127.0.0.1
PUERTO_BROKER=5002
LOG_FILE=/home/utnso/log teaml.txt

POSICIONES ENTRENADORES=[1]2,3|7,5]|5]
POKEMON_ENTRENADORES=[Pikachu|Squirtle|Pidgey,Squirtle|Charmander,
Bulbasaur]

OBJETIVOS_ ENTRENADORES=[Pikachu|Pikachu|Squirtle|Pidgey,
Pikachu|Charmander|Charmander, Squirtle|Bulbasaur]
TIEMPO_RECONEXION=30

RETARDO_CICLO_CPU=2

ALGORITMO_PLANIFICACION=SJF-CD

QUANTUM=0

ESTIMACION_ INICIAL=5

IP_BROKER=127.0.0.1

PUERTO_BROKER=5002

LOG_FILE=/home/utnso/log_team2.txt

Pagina 29/38

Proceso Game Boy

Este proceso cumplira la funcion de ser un cliente que permita:

1. Enviar un mensaje al Broker, a un Proceso Team o a un Proceso Game Card.
2. Suscribirse a una cola de mensajes especifica del Broker por un tiempo limitado.

Para esto se iniciara el proceso desde consola enviando los argumentos necesarios para poder enviar
el mensaje al proceso destino.

Lineamiento e Implementacion

El objetivo del proceso Game Boy es poder probar independientemente todos los otros procesos. De
esta manera, el mismo podrd enviar cualquier mensaje a cualquier cola que el proceso Broker
conozca y enviar por socket al proceso Team el mensaje de aparicion de un nuevo Pokemon.

Este proceso no espera ninguna ldgica especifica o particular, solo serializard y des serializara los
mensajes requeridos por argumentos y lo enviard al proceso. Este proceso se ejecutara enviando
parametros por argumento que indicara cudl sera la funcionalidad que el mismo cumpla. Para esto,
tendra dos posibles variantes dependiendo si es para enviar un mensaje o suscribirse.

De esta manera, para el envio de mensajes el formato de ejecucion del mismo sea el siguiente:

./gameboy [PROCESO] [TIPO_MENSAJE] [ARGUMENTOS]*

Cabe aclarar que dicho formato NO es modificable. No se permite la inclusién de ningun argumento
mas al mismo. De esta manera, la catedra proveerd al momento de realizar las pruebas en las
distintas instancias de evaluacidn scripts que contengan la ejecucién de varios de dichos comandos.

Los mensajes a implementar son:

Permitird enviar un mensaje al Broker a la cola de mensajes NEW_POKEMON. Para esto, el formato
del mensaje sera:

./gameboy BROKER NEW_POKEMON [POKEMON] [POSX] [POSY] [CANTIDAD]

Permitird enviar un mensaje al Broker a la cola de mensajes APPEARED_POKEMON. Para esto, el
formato del mensaje sera:

./gameboy BROKER APPEARED_POKEMON [POKEMON] [POSX] [POSY]
[ID_MENSAJE_CORRELATIVO]

Cabe aclarar que el ID_MENSAJE sera un valor definido tanto por la catedra como por los alumnos al
realizar sus propios test. Este ID dentro de un script o entorno de ejecucién debera ser UNICO.

Pagina 30/38

Permitira enviar un mensaje al Broker a la cola de mensajes CATCH_POKEMON. Para esto, el formato
del mensaje sera:

./gameboy BROKER CATCH_POKEMON [POKEMON] [POSX] [POSY]

Permitird enviar un mensaje al Broker a la cola de mensajes CAUGHT_POKEMON. Para esto, el formato
del mensaje sera:

./gameboy BROKER CAUGHT_POKEMON [ID_MENSAJE_CORRELATIVO] [OK/FAIL]

Permitird enviar un mensaje al Broker a la cola de mensajes GET_POKEMON. Para esto, el formato del
mensaje sera:

./gameboy BROKER GET_POKEMON [POKEMON]

Permitird enviar un mensaje al Team como si él mismo viniera desde la cola APPEARED_POKEMON
del Broker. Para esto, el formato del mensaje sera:

./gameboy TEAM APPEARED_POKEMON [POKEMON] [POSX] [POSY]

Permitird enviar un mensaje al Game Card como si él mismo viniera desde la cola NEW_POKEMON
del Broker. Para esto, el formato del mensaje sera:

./gameboy GAMECARD NEW_POKEMON [POKEMON] [POSX] [POSY] [CANTIDAD]
[ID_MENSAJE]

Permitird enviar un mensaje al Game Card como si él mismo viniera desde la cola CATCH_POKEMON
del Broker. Para esto, el formato del mensaje sera:

./gameboy GAMECARD CATCH_POKEMON [POKEMON] [POSX] [POSY] [ID_MENSAJE]

Permitird enviar un mensaje al Game Card como si él mismo viniera desde la cola GET_POKEMON del
Broker. Para esto, el formato del mensaje sera:

./gameboy GAMECARD GET_POKEMON [POKEMON] [ID_MENSAJE]

En este modo, el proceso GameBoy deberd conectarse como suscriptor durante un tiempo definido
en segundos pasado por parametro. Para esto se mantendrd la siguiente nomenclatura en su
ejecucion:

./gameboy SUSCRIPTOR [COLA_DE_MENSAJES] [TIEMPO]

Pagina 31/38

Este modo permitira obtener los mensajes actuales que contiene en memoria el Broker y probar

efectiva y correctamente el algoritmo de reemplazo y la compactacion.

Logs obligatorios

Para permitir la verificacion/validacion del mdodulo se exigird tener un

archivo de log especifico e

independiente que contenga la informacién indicada en esta seccidén. No se permite la inclusion de
otros mensajes y exclusion de ninguno de los mismos (la falta o agregado de alguno puede implicar
la desaprobacion del grupo). Dado que el log serd el medio de validacién del trabajo practico se exige
no utilizar la consola como medio de logueo. Cada operacion debe loguearse en una unica linea
indicando la misma y sus datos, en caso que el grupo desee loguear contenido extra debera realizarlo

en un archivo independiente.
Las acciones a loguear en este archivo son:

1. Conexién a cualquier proceso.
2. Suscripcién a una cola de mensajes.
3. Llegada de un nuevo mensaje a una cola de mensajes.

Archivo de Configuracion

El proceso debera poseer un archivo de configuracién en una ubicacién
especificar, al menos, los siguientes parametros:

conocida donde se deberan

Campo Tipo Ejemplo
IP_BROKER [String] 127.0.0.1
IP_TEAM [String] 127.0.0.2
IP_GAMECARD [String] 127.0.0.3
PUERTO_BROKER [Numérico] 5003
PUERTO_TEAM [Numérico] 5002
PUERTO_GAMECARD [Numérico] 5001

Queda a decisién del grupo el agregado de mas pardmetros al mismo.

IP_BROKER=127.0.0.1
IP_TEAM=127.0.0.2
IP_GAMECARD=127.0.0.3
PUERTO_BROKER=5003
PUERTO_TEAM=5002
PUERTO_GAMECARD=5001

Pagina 32/38

Anexo | - Ejemplos de Flujos

Flujo New Pokemon - Appeared Pokemon

Game Boy Team Broker Game Card

NEW_POKEMON
-

NEW_POKEMON

NEW_POKEMON
-

APPEARED POKEMON

APPEARED_POKEMON
|l

APPEARED POKEMOM APPEARED_POKEMON
- i

El Game Boy va a ser nuestro punto de partida para crear un nuevo pokemon. Este le va a enviar un
mensaje al Broker a través de la cola NEW_POKEMON indicando el pokemon, su posicion y su
cantidad. El broker luego, le debera informar a todos los procesos Game Card que estén suscritos a la
cola de mensajes. Los procesos Game Card avisaran en la cola de mensajes de APPEARED_POKEMON
gue los pokemones fueron agregados correctamente. Nuevamente el proceso Broker va a notificar a
todos los procesos suscritos a dicha cola del nuevo evento.

Flujo Get Pokemon - Localized Pokemon

Game Boy Team Broker Game Card

GET_POKEMOM -
GET_POKEMON

GET_POKEMON
L

LOCALIZED_POKEMON
=al

LOCALIZED POKEMON
-d

Al iniciar el proceso Team, va a enviar un mensaje por cada pokemon que requiera capturar, a través
de la cola de GET_POKEMON. El Broker luego va a redirigir el mensaje a los procesos suscritos. Una

Pagina 33/38

vez que la Game Card recibe el mensaje, va a recopilar la informaciéon que tenga de ese pokemon
(cantidad y posicién) y va a enviarlos por la cola de LOCALIZED_POKEMON. El proceso Game Boy
tambien podra enviar el mensaje de GET_POKEMON al Game Card. Este flujo nos permitira la
evaluacion del trabajo practico.

Flujo Catch Pokemon - Caught Pokemon

Game Boy Team Broker Game Card

CATCH_POKEMON -

CATCH_POKEMON -

CATCH_POKEMON -

CAUGHT_POKEMON

| CAUGHT_POKEMON

CAUGHT_POKEMON

Este flujo es iniciado por la aparicién de nuevos pokemons (cuando el Team recibe un mensaje en
APEARED_POKEMON). Una vez que los procesos se enteran que aparecid un nuevo pokémon vy
determinaron si que lo necesitan, van a intentar capturarlo (utilizando el proceso explicado en el
proceso Team). Para esto cada proceso Team va a enviar un mensaje a través de la cola de
CATCH_POKEMON al Boker, el cual va a reenviar a todos los procesos subscriptos a dicha cola, el
mensaje. Una vez que el Game Card resuelva las peticiones, el Broker va a informar a todos los
procesos teams todos los mensajes de CAUGHT_POKEMON, los cuales deberd ignorar todos los
mensajes que no correspondan con su id. El proceso Game Boy tambien podra enviar el mensaje de
CATCH_POKEMON y CAUGHT_POKEMON al Broker. Este debera distribuir correctamente los nuevos
mensajes a los suscriptores. Este flujo nos permitira la evaluacién del trabajo practico.

Pagina 34/38

Anexo Il - Mensajes en memoria

El objetivo de este anexo es definir con ejemplos cdmo se guardan los distintos tipos de mensaje en
memoria. El objetivo de esto es normalizar el consumo de memoria principal para los distintos
mensajes.

Este mensaje tendrd el nombre del Pokemon a enviar, las coordenadas de la posicién donde se
encuentra y la cantidad de pokémon de esta especie que habra en dicha posicion. Un ejemplo del
mensaje es:

‘Pikachu’ 5 10 2

Viéndolo a nivel tipo de dato vamos a tener un uint_32 para saber el largo del nombre del pokémon,
mas el nombre del pokemon y tres uint_32 indicando la posicidn y la cantidad. Este ejemplo tendra
un tamano de 23 bytes en memoria principal (lo que ocupan cuatro uint_32 mas el largo del nombre
del pokemon).

Este mensaje tendra el nombre del pokémon, un entero para la cantidad de pares de coordenadas y
los pares de coordenadas donde se encuentra el mismo. Un ejemplo del mensaje es:

‘Pikachu’ 3451593

Viéndolo a nivel tipo de dato vamos a tener un uint_32 para saber el largo del nombre del pokémon,
el nombre del pokemon, un uint_32 indicando la cantidad de posiciones donde se encuentra y un par
de uint_32 para cada posicién donde se encuentre. Este ejemplo tendra un tamafo de 39 bytes en
memoria principal (lo que ocupa un uint_32 multiplicado por los 8 que tenemos mas el largo del
nombre del pokemon).

Este mensaje tendra el nombre del pokemon. Un ejemplo del mensaje es:

‘Pikachu’

Viéndolo a nivel tipo de dato vamos a tener un uint_32 para saber el largo del nombre del pokemony
luego el nombre del pokemon. Este ejemplo tendra un tamarfio de 11 bytes en memoria principal (lo
gue ocupa un uint_32 mas el largo del nombre del pokemon).

Este mensaje tendra el nombre del pokemon y para indicar la posicién en Xy en Y. Un ejemplo del
mensaje es:

‘Pikachu’ 1 5

Pagina 35/38

Viéndolo a nivel tipo de dato vamos a tener un uint_32 para saber el largo del nombre del pokémon,
el nombre del pokemon y dos uint_32 indicando la posicion. Este ejemplo tendra un tamano de 19
bytes en memoria principal (lo que ocupan tres uint_32 mas el largo del nombre del pokemon).

Este mensaje tendrd el nombre del pokemon y la posicion en Xy en Y. Un ejemplo del mensaje es:

‘Pikachu’ 1 5

Viéndolo a nivel tipo de dato vamos a tener un uint_32 para saber el largo del nombre del pokémon,
el nombre del pokemon y luego dos uint_32 indicando la posicidn. Este ejemplo va a tener un
tamafio de 19 bytes en memoria principal (lo que ocupan tres uint_32 mas el largo del nombre del
pokemon).

Este mensaje tendrd un valor para indicar si se pudo o no atrapar al pokemon (0 o 1). Un ejemplo del
mensaje es:

0

Viéndolo a nivel tipo de dato vamos a tener un uint_32 para saber si se puedo o no atrapar al
pokemon. Este ejemplo va a tener un tamafio de 4 bytes en memoria principal (lo que ocupa un
uint_32).

Pagina 36/38

Descripcion de las entregas

Hito 1: Conexion Inicial

Fecha: 25/04

Objetivos:
% Familiarizarse con Linux y su consola, el entorno de desarrollo y el repositorio.
% Aplicar las Commons Libraries, principalmente las funciones para listas, archivos de conf y logs
% Definir el Protocolo de Comunicacién

Implementacién minima:

% Una biblioteca muy basica que permita enviar strings hasta un proceso que actte de servidor.

Lectura recomendada:

Tutorial de “Cémo arrancar” de la materia: http://fag.utnso.com.ar/arrancar

Beej Guide to Network Programming - _https://beej.us/guide/bgnet

SO UTN FRBA Commons Libraries - https://github.com/sisoputnfrba/so-commons-library
Guia de Punteros en C - http://fag.utnso.com.ar/punteros

Hito 2: Avance del Grupo

Fecha: 16/05

Objetivos:

*
*

*

Proceso Team: Permitir solamente planificar de forma FIFO un conjunto de entrenadores.

Proceso Broker: Implementacion completa de la administracion de las colas de mensajes. Aceptar
suscripciones a una cola de mensajes especifica.

Proceso GameBoy: Permitir el envio de varios mensajes al proceso Broker y el mensaje Appeared Pokemon al
proceso Team.

Lectura recomendada:

Sistemas Operativos, Silberschatz, Galvin - Capitulo 3: Procesos y Capitulo 4: Hilos
Sistemas Operativos, Stallings, William - Parte IV: Planificacion

Pagina 37/38

http://faq.utnso.com.ar/arrancar
https://beej.us/guide/bgnet/
https://github.com/sisoputnfrba/so-commons-library
http://faq.utnso.com.ar/punteros

Hito 3: Checkpoint “Presencial” - Via pantalla compartida

Fecha: 13/06

Objetivos:
% Proceso Team: Permitir el envio de mensajes al Broker para Catch Pokemon y Get Pokemon.
% Proceso Broker: Implementacion del sistema de Particiones Dindmicas. Administrar flujo de mensajes y envio
de los mismos a los distintos suscriptores.
% Proceso GameCard: Comenzar implementacién de Tall Grass. Creacién de archivos y directorios.
% Proceso GameBoy: Finalizar el desarrollo del médulo.

Lectura recomendada:

e Sistemas Operativos, Silberschatz, Galvin 7ma Ed. - Capitulo 6: Sincronizacidn de Procesos
Sistemas Operativos, Stallings, William - Capitulo 5: Concurrencia
Sistemas Operativos, Silberschatz, Galvin 7ma Ed. - Capitulo 8: Memoria Principal
Sistemas Operativos, Stallings, William - Capitulo 7: Gestidn de la Memoria
Sistemas Operativos, Silberschatz, Galvin 7ma Ed. - Capitulo 10: Interfaz del Sistema de Archivos
Sistemas Operativos, Stallings, William - Capitulo 12: Gestién de Ficheros

Hito 4: Avance del Grupo

Fechas: 27/06

Objetivos:
% Proceso Team: Implementacién del algoritmo RR, desarrollo de métricas.
% Proceso Broker: Sistema de reemplazo y compactacion.
% Proceso GameCard: Avances sobre la implementacién del FileSystem de Tall Grass. Poder leer y escribir
archivos.

Lectura recomendada:
e Sistemas Operativos, Silberschatz, Galvin 7ma Ed. - Capitulo 11: Implementacidn de Sistemas de Archivos

Hito 5: Entregas Finales

Fechas: 18/7 - 25/7 - 8/8

Objetivos:
% Probar el TP en un entorno distribuido
% Realizar pruebas intensivas
% Finalizar el desarrollo de todos los procesos
% Todos los componentes del TP ejecutan los requerimientos de forma integral, bajo escenarios de stress.

Lectura recomendada:

e Guias de Debugging del Blog utnso.com - https://www.utnso.com.ar/recursos/guias
® MarioBash: Tutorial para aprender a usar la consola - http://fag.utnso.com.ar/mariobash
o Tutoral de como desplegar un proyecto - https://github.com/sisoputnfrba/so-deploy

Pagina 38/38

https://www.utnso.com.ar/recursos/guias/
http://faq.utnso.com.ar/mariobash
https://github.com/sisoputnfrba/so-deploy

	Versión de Cambios
	Objetivos y Normas de resolución
	Objetivos del Trabajo Práctico
	Características
	Evaluación del Trabajo Práctico
	Deployment y Testing del Trabajo Práctico
	Aclaraciones

	
	Abstract
	Arquitectura del Sistema
	Proceso Broker
	Abstract - Message Queue (MQ)
	Lineamiento e Implementación
	Administración de mensajes
	Particiones dinámicas con compactación
	Procedimiento para almacenamiento de datos
	Algoritmos para elección de partición libre y elección de víctima

	Buddy System
	Dump de la Caché
	Tipos de Suscribers
	Suscriptor global
	Suscriptor globales por mensajes correlativos

	Listado de Message Queues
	Tipos de datos

	Logs obligatorios
	Archivo de Configuración
	Ejemplo de Archivo de Configuración

	Proceso Game Card
	Tall Grass
	Metadata
	Bitmap
	Files Metadata

	Datos

	Lineamiento e Implementación
	Archivos Pokemon
	New Pokemon
	Catch Pokemon
	Get Pokemon

	Archivo de Configuración
	Ejemplo de Archivo de Configuración

	Proceso Team
	Lineamiento e Implementación
	Planificación
	Diagrama de estados de un Entrenador
	Competición y Deadlock
	Tipo de mensajes
	Appeared Pokemon
	Get Pokemon
	Catch Pokemon
	Localized Pokémon
	Caught Pokémon

	Logs obligatorios
	Archivo de Configuración
	Ejemplo de Archivo de Configuración

	Proceso Game Boy
	Lineamiento e Implementación
	Broker - New Pokemon
	Broker - Appeared Pokemon
	Broker - Catch Pokemon
	Broker - Caught Pokemon
	Broker - Get Pokemon
	Team - Appeared Pokemon
	Game Card - New Pokemon
	Game Card - Catch Pokemon
	Game Card - Get Pokemon
	Modo Suscriptor

	Logs obligatorios
	Archivo de Configuración
	Ejemplo de Archivo de Configuración

	Anexo I - Ejemplos de Flujos
	Flujo New Pokemon - Appeared Pokemon​
	Flujo Get Pokemon - Localized Pokemon
	Flujo Catch Pokemon - Caught Pokemon

	Anexo II - Mensajes en memoria
	Tamaño de New Pokemon
	Tamaño de Localized Pokemon​Este mensaje tendrá el nombre del pokémon, un entero para la cantidad de pares de coordenadas y los pares de coordenadas donde se encuentra el mismo. Un ejemplo del mensaje es:
	Tamaño de Get Pokemon
	Tamaño de Appeared Pokemon
	Tamaño de Catch Pokemon
	Tamaño de Caught Pokemon

	
	Descripción de las entregas
	
	Hito 1: Conexión Inicial
	Hito 2: Avance del Grupo
	
	
	Hito 3: Checkpoint “Presencial” - Vía pantalla compartida
	
	Hito 4: Avance del Grupo
	Hito 5: Entregas Finales

