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This document investigates issues in Chrome 66.0.3328.2 with parallel GC where we could do
better in V8 (with or without the collaboration of the TaskScheduler).

For a broader description of the parallel work being submitted to TaskScheduler by V8, refer to
this document.

Full traces can be downloaded here on demand.

Tip: each bar in the trace view is colored with a darker part whose size is proportional to the
time spent running on the physical CPU (as opposed to wall-time).

Issues #1

Main thread not contributing to evacuate

GC_MC_EVACUATE_COPY on the main thread kicks off parallel tasks but doesn’t contribute
itself:


https://docs.google.com/document/d/1Kl8XNkdRiEls2kWDznARrW2LBAYpw2BMO1DvPtLGq7M/edit#
https://drive.google.com/drive/folders/0B9wXJ4IPPZBAdmFONXlkYzhvNUU?usp=sharing
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Here’s another one where it managed to contribute but was still idle for 95% of it (0.05ms CPU
time vs 1ms wall time).
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Main thread idle for 50% of a 14ms GC

This would be okay if all threads were descheduled (e.g. because this is a background tab
running at background process priority). But this isn’t the case because workers are getting a
full CPU load (and the rest of the trace shows nothing is happening in other chrome processes).



https://drive.google.com/file/d/1C9JDm3yAFYcMMMTHqM9ISWGAXNwiDV4E/view?usp=sharing

" | praum e
| Ti6Ems

ProxyMain: SetDeferCommits
* CiRendererMain

Chrome_ChidiOThread
PendingTree:waiting

> ScheduledTasks

Scheduler pending_submit_fra.

» Compositor

> CompositorTileWorker1/5288
> CompositorTileWorker2/7396
> CompositorTileWorkerBackgro
* ScriptStreamerThread

TaskSchedulerForegroundBlock
+ TaskSchedulerForegroundWor

" TSR - e | ]

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

s tom solocios, | Vastes (1) |
T WS

Catnory Godons tmae s
Uae Pl Cotogory 3¢

st 2723501 ms

Wall Duration 14605 ms
CPU Duration Ta3ms

Slow GC in one isolate because other isolate stole all workers

In this case it's a worker thread’s GC being slow because main thread is doing concurrent
sweeping, but it could be the opposite (main thread slowed down by worker thread’s isolate; and

any concurrent operation can technically be problematic).
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Not enough workers for parallel marking

This is a 4-core machine and one core is unutilized for an 8ms marking phase in a 12ms
MajorGC (note to self: we should probably make “num workers == num cores - 1” since main

thread should always be busy).
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https://drive.google.com/file/d/1YFC8lh67rCEQOMA2_A8i7BlFw_NHkCma/view?usp=sharing

Solution #1

Smoother distribution of assignments in task array

Discovered that the algorithm to assign job to each worker resulted in a lot of overlap (and
hence in the main thread often merely getting to contend with other workers assigned the same
workload and already ahead of it).

In see below we see change’s effect on dev machine: main thread contributes full portion of its
assignment (but finishes much earlier in this case so still waits but definitely better overall -- and
less contention).
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https://drive.google.com/file/d/1FE7oeG0JSFDdMMWkHCKLRxJxa-hUdcx-/view?usp=sharing

Issues #2

Many work items, not enough tasks

Aaah, misconfiguration issue... (fixed: CL1, CL2). Had tweaked TaskScheduler to have one less
worker than cores (assuming busy main thread as noted above). But GC was using
“‘NumAvailableBackgroundThreads()” as a signal for “num cores”. Manually doing these
workload computations on opposite ends of the codebase is error-prone... hinting once again
that it'd be much simpler to have a job’s APl exposed by TaskScheduler directly.
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Scavenger step with 23 work items gets only 2 tasks

Note: Have anecdotally seen Scavenge steps with ~160 work items use only 1 task (because
task count is based on page size -- may want to revisit that eventually).


https://chromium-review.googlesource.com/c/v8/v8/+/911670
https://chromium-review.googlesource.com/c/v8/v8/+/904662
https://drive.google.com/file/d/16fcbkeExi1gHTHVDEtEEZiTJSneeJYw7/view?usp=sharing
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Poor sharding of Scavenger work (5 large items, 1 task)

Lots of desched, inefficiently fetching pages from RAM one by one in a single task?
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https://drive.google.com/file/d/1aw1NMQMBnFSYAZ8Lm8RCXUe6BoORnZDY/view?usp=sharing

Poor latency in otherwise properly sharded Scavenge (4 tasks)

Suspicious... added more task_scheduler tracing events to diagnose this if it happens again...
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Main thread suspiciously idle for 6ms during 15ms MajorGC (CPU
not going above 50% and work items available)

Note: Recently added trace entries for individual work items, makes us clearly see that main
thread went idle instead of picking up available work items here..?

And in the evacuate copy phase, for some reason, TaskScheduler didn’t schedule the 4th task
on the extra worker?

This might have been a background tab at background OS priority, is the kernel somehow
restricting the number of active threads in a background process? Note to self: would be nice to
add more details to tracing around backgrounding.


https://drive.google.com/file/d/1prrkIlNApLNeu-ppL_5PQT8a2opgKubb/view?usp=sharing
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Evacuate Copy work items too coarse

Poor distribution of workload (2.5ms evacuate_copy, 0.5ms contributed by main thread and
most other workers).
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Main thread blocks on concurrent marking workers when
MajorGC kicks in without joining them

If incremental (concurrent) marking happens to be under way. MajorGC begins with the main
thread blocking on its completion, without helping workers. This can be particularly problematic


https://drive.google.com/file/d/1On8ZUs6qwT1UnrvG3hxgBgNx79VKKON-/view?usp=sharing
https://drive.google.com/file/d/11si1qvQUhRi1jMPNTzgJpqp3D-yFKOf7/view?usp=sharing

on ARM where we know the main thread tends to be on a BIG core while the workers are
usually on little workers.
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Concurrent Marking could be more aggressive

It currently only uses num_cores/2. A change of mine accidently brought this down to
(num_cores-1)/2 and we saw regressions on many perf graphs (probably down from 2 to 1
cores as machines typically have 4 cores. This was recovered but | now assume that using
(num_cores-1 == 3) cores for concurrent marking would also result in further improvements.
Need to have smaller/preemptable work items first | assume however?

Pausing concurrent marking steals the workers from the pool

Fixing this will also allow us to be more aggressive with concurrent marking.
While this screenshot only shows a 6ms MinorGC with two inactive workers, it shows what'’s
happening and one could imagine much worse scenarios of this happening in the wild.


https://drive.google.com/file/d/1z2ELdYK5xtKF5wi0b5qVDbOpt3_TQKIo/view?usp=sharing
https://chromeperf.appspot.com/group_report?bug_id=809961
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Suspiciously inactive EVACUATE_COPY

CPU idle for 21/28ms on main thread and worker threads.
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https://drive.google.com/file/d/1kLfH1dM5TOJbiD2v_KJsxWXakpd2k-7q/view?usp=sharing

Finer grain

browse:news:cnn

178,760 ms. 73770 ms 1173780 ms 1175790 ms

~ Chrome_ChildlOThread

» Latency: ScrollUpdate

= Compositor L

ZompositorTileWorker1/14479

NorkerSchedulerldlePeriod e

> File thread
» GpuMemoryThread
» Memorylnfra

NorkerSchedulerldlePeriod I

= ScriptStreamer thread
raskSchedulerForegroundBlock.
v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

41.298 ms

VB.GC_MC_EVACUATE_COPY

LonglalePe iodPaused (Did Not Einish)

LangldlePeriodPaused (Did Not Finish)

1item selected. | Sice (1)

Title V8 GC_MC_EVACUATE_COPY
Category disabled-by-gefault-v8.ge

User Friendly Category ~ other

start 173,756 829 ms
Wall Duration 41298 ms
CPU Duration 20521 ms
Seff Time 2815ms
CPU Self Time 0330ms

Even finer grain evacuate copy steps (some interrupted, some 100% CPU)

Interesting that in some slow steps : EvacuateVisitorBase::RawMigrateObject completes early.
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Analysis



https://drive.google.com/file/d/1FKZHkXtWK2fZCk_3PClPcbpzKilnbuOr/view?usp=sharing
https://drive.google.com/file/d/1n1Y7kR0jkRE0Hw8e4ZMp--WvZrTaugfZ/view?usp=sharing
https://docs.google.com/document/d/1pPJX6NAl-I-CXmm64NIpJh2eT1EwNEgy2izpZayWu-8/edit

Broader view
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BIG.little GC priority inversion

The main thread is on a BIG core along with one worker (seems like). 4 workers our on little
cores and the main thread ends up waiting on them.
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Solution #2

Preempt concurrent markers when Scavenge kicks in. Previously we would pause concurrent
marking but wouldn’t yield the worker thread back to the pool as such Scavenge would typically
not have workers to help it.


https://drive.google.com/file/d/1gxClws5M79K01DNPztP4lr9xNeIvL_2t/view?usp=sharing
https://drive.google.com/file/d/1zH7PZkocrCORQLgg_Gr8E0FHeFjC5P3Y/view?usp=sharing
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Here’s another interesting trace which shows non-GC related tasks contending for the workers
as well. Ideally these would be pieced in finer grained tasks to be able to yield to high-priority
main thread blocking scavenge tasks.
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https://drive.google.com/file/d/1RBvf0OnRhhzP_6KAtX89SbKHlhXwCopc/view?usp=sharing
https://drive.google.com/file/d/1C2xWqcI68SD6ITeStFcAYzpIfJzQLA1X/view?usp=sharing

Related Tracing Improvements

Flow events for TaskScheduler tasks
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