PUBLIC
V8 GC Parallelization Issues

Author: gab@
Last update: 2018-01-23

This document investigates issues in Chrome 66.0.3328.2 with parallel GC where we could do
better in V8 (with or without the collaboration of the TaskScheduler).

For a broader description of the parallel work being submitted to TaskScheduler by V8, refer to
this document.

Full traces can be downloaded here on demand.

Tip: each bar in the trace view is colored with a darker part whose size is proportional to the
time spent running on the physical CPU (as opposed to wall-time).

Issues #1

Main thread not contributing to evacuate

GC_MC_EVACUATE_COPY on the main thread kicks off parallel tasks but doesn’t contribute
itself:

https://docs.google.com/document/d/1Kl8XNkdRiEls2kWDznARrW2LBAYpw2BMO1DvPtLGq7M/edit#
https://drive.google.com/drive/folders/0B9wXJ4IPPZBAdmFONXlkYzhvNUU?usp=sharing

|24.720 mg , \ \ [24730 mg \ \ . 24731 mg \ \ \ 24732 mg
2.832 ms

v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

* Renderer (pid 6588). Bing, MSN Canada - Hotmail, Outlook, Skype, Messenger, Bing and Latest News, uptime:8s
ienderFrame

lopLevel
roxyMain:.SetDeferCommits
* CrRendererMain

V2.GC_MC_EVACUATE_COPY

“hrome_ChildlOThread
Animation
_ayerTreeHostimpl::SetVisible
2ending Tree:waiting

*» ScheduledTasks
scheduler:pending submit fra.. .

» Compositor

» CompositorTileWorker1/10788
» CompositorTileWorker2/4252

» CompositorTileWorkerBackgro

» ScriptStreamerThread
lfaskSchedulerForegroundBlock. ..

v TaskSchedulerForegroundWor

I

v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

[askSchedulerServiceThread
1 item selected. Slice (1)

Title V8.GC_MC_EVACUATE_COPY
Category disahled-by-default-v8.gc
User Friendly Category other
Start 24,729.580 ms
‘Wall Duration 2.832ms
CPU Duration 0.079 ms

Here’s another one where it managed to contribute but was still idle for 95% of it (0.05ms CPU
time vs 1ms wall time).

https://drive.google.com/file/d/1ygDS2JnS-kcPWLqrrO91NoyF_TytZFvV/view?usp=sharing

|26:350,00p) us,

| 26,360,200 ps, | 26,350,400 ps, | 26,360,600 ps, | 26,350,800 ps, | 26,361,000 p:

1.022 ms

lopLevel
ProxyMain:-SetDeferCommits
v (CrRendererMain

Chrome_ChildlOThread
PendingTree:waiting

+ ScheduledTasks
Scheduler pending_submit_fra

» Compositor

» CompositorTileWorker1/5288
» CompositorTileWorker2/7396
» CompositorTileWorkerBackgro

» ScriptStreamerThread
TaskSchedulerForegroundBlock

v TaskSchedulerForegroundWor
v TaskSchedulerForegroundWor
v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

TaskSchedulerService Thread

V2.GC_MC_EVACUATE_COPY

1item selected. | Slice (1)

Title V8.GC_MC_EVACUATE_COPY
Category disabled-by-default-v8.gc

User Friendly Category other

Start 26,360.056 ms
‘Wall Duration 1.022 ms
CPU Duration 0.058 ms

Main thread idle for 50% of a 14ms GC

This would be okay if all threads were descheduled (e.g. because this is a background tab
running at background process priority). But this isn’t the case because workers are getting a
full CPU load (and the rest of the trace shows nothing is happening in other chrome processes).

https://drive.google.com/file/d/1C9JDm3yAFYcMMMTHqM9ISWGAXNwiDV4E/view?usp=sharing

" | praum e
| Ti6Ems

ProxyMain: SetDeferCommits
* CiRendererMain

Chrome_ChidiOThread
PendingTree:waiting

> ScheduledTasks

Scheduler pending_submit_fra.

» Compositor

> CompositorTileWorker1/5288
> CompositorTileWorker2/7396
> CompositorTileWorkerBackgro
* ScriptStreamerThread

TaskSchedulerForegroundBlock
+ TaskSchedulerForegroundWor

" TSR - e |]

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

s tom solocios, | Vastes (1) |
T WS

Catnory Godons tmae s
Uae Pl Cotogory 3¢

st 2723501 ms

Wall Duration 14605 ms
CPU Duration Ta3ms

Slow GC in one isolate because other isolate stole all workers

In this case it's a worker thread’s GC being slow because main thread is doing concurrent
sweeping, but it could be the opposite (main thread slowed down by worker thread’s isolate; and

any concurrent operation can technically be problematic).

https://drive.google.com/file/d/1PHeAwHkFztjqFiIElP9v65XneByV5B8X/view?usp=sharing

1 IUAYIVIG | OSWISIST LU

* CrRendererMain

‘hrome_ChildIOThread

> Animation = — — — |

> LaverTreeHostimpl: SetVisible
‘ending Tree:waiting

» ScheduledTasks
icheduler:pending_submit_fra.

Compositor
» CompositorTileWorker1/13260
» CompositorTileWorker2/13032
v DedicatedWorker Thread

» DedicatedWorker Thread

» ScriptStreamerThread
askSchedulerForegroundBlock.

v TaskSchedulerForegroundWor
v TaskSchedulerForegroundWor
v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

Not enough workers for parallel marking

This is a 4-core machine and one core is unutilized for an 8ms marking phase in a 12ms
MajorGC (note to self: we should probably make “num workers == num cores - 1” since main

thread should always be busy).

https://drive.google.com/file/d/1tuR__1KSIxHL3m_uLsYkQgg5GVNUz4tb/view?usp=sharing

@ chrome:/ftracing x

< C | ® Chrome

omes//tracing

[Record || Save || Load | trace_siow_GC_on_workerthread_during_background_sweeping.f

ain_thread json.gz

i
1opLever

12.825 ms

128380 m eeifers JEEE
i

ProxyMain::SetDeferCommits
+ CrRendererMain

Chrome_ChildiOThread
PendingTree waiting

> ScheduledTasks
Scheduler:pending_submit_fra

> Compositor

» CompositorTileWorker1/5283
> CompositorTileWorker2/7396
> CompositorTileWorkerBackgro
> ScriptStreamerThread
TaskSchedulerForegroundBlock
TaskSchedulerForegroundWor

TaskSchedulerForegroundWor I

TaskSchedulerForegroundWor

TaskSchedulerForegroundWor I

TaskSchedulerServiceThread

1 tom seleced. | VB sice 1) |
Tie (s

Category deviools.timeline v
User Friendly Category gc

Start 26349388 ms
Wall Duration 12825 ms
GPU Duration 10305 ms

Other operations (i.e. all but evacuate copy) aren’t desched so it doesn’t
appear to be kernel/test machine’s fault

et

735

30044-apicata googleusercontentcom/dovnioad!<torage/v1/b/chrome. ele
bowse nevsicnn

+ Chrome_ChiiOThread

» Latency: ScrollUpdate

+ Compostor
ComposioieWorker /14470
WorkerSchedueridiePerod

" Fi troad

+ GpuMemoryThread

. Momoryinta
WorkarSchecdueridePeriod

. ScrptStrcamer tread
TaskScheduleForegroundBlock
- TaskSchodulrForogroundWor |

TaskSchedulorForegroundWor

TaskSchedulerForegroundWor I '

-

oo D e et

NrCOICOp. %@ B @ ® @ B w I
14 [iew Optons MajorGC -
1isier T

SEEET U eBG A

Er

https://drive.google.com/file/d/1Ao5ww3rBWS_tmscvUTVGhEy3YFjafzzf/view?usp=sharing
https://drive.google.com/file/d/1YFC8lh67rCEQOMA2_A8i7BlFw_NHkCma/view?usp=sharing

Solution #1

Smoother distribution of assignments in task array

Discovered that the algorithm to assign job to each worker resulted in a lot of overlap (and
hence in the main thread often merely getting to contend with other workers assigned the same
workload and already ahead of it).

In see below we see change’s effect on dev machine: main thread contributes full portion of its
assignment (but finishes much earlier in this case so still waits but definitely better overall -- and
less contention).

* CrRendererMain

Chrome_ChildlOThread

= Compositor
CompositorTileWorker1/129600
CompositorTileWorker2/118648
CompositorTileWorker3/131364
CompositorTileWorker4/119044

|2.236 ms |

|3.238ms,

| |2.240 ms,

(3

DedicatedWorker Thread
TaskSchedulerForegroundBloc

TaskSchedulerForegroundWor

TaskSchedulerForegroundWor

TaskSchedulerForeground\Wor

TaskSchedulerForeground\Wor

TaskSchedulerForeground\Wor

TaskSchedulerForeground\Wor

TaskSchedulerForegroundWor

TaskSchedulerForegroundWor

TaskSchedulerForegroundWor

Renderer (pid 127748). Google Maps, upfime:38s

5.485 ms

CrRendererMain

https://drive.google.com/file/d/1FE7oeG0JSFDdMMWkHCKLRxJxa-hUdcx-/view?usp=sharing

Issues #2

Many work items, not enough tasks

Aaah, misconfiguration issue... (fixed: CL1, CL2). Had tweaked TaskScheduler to have one less
worker than cores (assuming busy main thread as noted above). But GC was using
“‘NumAvailableBackgroundThreads()” as a signal for “num cores”. Manually doing these
workload computations on opposite ends of the codebase is error-prone... hinting once again
that it'd be much simpler to have a job’s APl exposed by TaskScheduler directly.

|372ms |23.394 ms |23.376 ms| |23.378 ms

2.191 ms

Chrome_ChildlOThread
Compositor
CompositorTileWorker1/11544

CompositorTileWorker2/11520
SompositorTileWorkerBackgrou. ..

> ScriptStreamer thread
» TaskSchedulerForegroundBloc
v TaskSchedulerForegroundWor

vy v v v

v TaskSchedulerForegroundWor

* TaskSchedulerForegroundWor

v TaskSchedulerServiceThread

Scavenger step with 23 work items gets only 2 tasks

Note: Have anecdotally seen Scavenge steps with ~160 work items use only 1 task (because
task count is based on page size -- may want to revisit that eventually).

https://chromium-review.googlesource.com/c/v8/v8/+/911670
https://chromium-review.googlesource.com/c/v8/v8/+/904662
https://drive.google.com/file/d/16fcbkeExi1gHTHVDEtEEZiTJSneeJYw7/view?usp=sharing

| [26.247,600 26,247,800 |26:248,000 s
26.247 s

Chrome_ChildlOThread

» Compositor
CompositorTileWorker1/9112
CompositorTileWorker2/10700

» ScriptStreamer thread
StackSamplingProfiler
TaskSchedulerForegroundBloc
TaskSchedulerForegroundWor
TaskSchedulerForegroundWor
TaskSchedulerForegroundWor

v

v

v

<

TaskSchedulerServiceThread

1 item selected. Slice (1)

Title ltemParallelJob::Run
Category disabled-by-default-
v8.ge
User Friendly Category ~ other
Start 26,247.476 ms
v Args
num_tasks 2
num_items 23

Poor sharding of Scavenger work (5 large items, 1 task)

Lots of desched, inefficiently fetching pages from RAM one by one in a single task?

[erssems

[sts8me [psssms [ss0ms [prss2ms [psssme
9278 ms

* Renderer (pid 12048), uptime:3s.
v CrRendererMain

Chrome_ChildiOThread
* Compositor

v TaskSchedulerForegroundWor

+ Renderer (pid 13550),uptime 17365 -
v CrRendererMain

1 item selected. | Siice (1)
Tite ltemParalleljob:Run
Category disabled-by-defaut-

User Friendly Category other
31,486,064 ms.
vAgs
num_tasks 1
num_items. B

https://drive.google.com/file/d/1aw1NMQMBnFSYAZ8Lm8RCXUe6BoORnZDY/view?usp=sharing

Poor latency in otherwise properly sharded Scavenge (4 tasks)

Suspicious... added more task_scheduler tracing events to diagnose this if it happens again...

| | |22.440 ms [22.442 ms |22.444 ms |22 a6
|

| 6.699 ms
v CrRendererMain

Chrome_ChildlOThread 1 |
> Compositor | | _ | | 1
CompositorTileWorker1/8764]

CompositorTileWorker2/12080
> DedicatedWorker thread

> File thread
StackSamplingProfiler

e _

v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

—e

1 item selected. Slice (1)
Title ItemParallelJob::Run
Category disabled-by-default-
v8.gc
User Friendly Category other
Start 22,439.802 ms
v Args

num_tasks
num_items 65

Main thread suspiciously idle for 6ms during 15ms MajorGC (CPU
not going above 50% and work items available)

Note: Recently added trace entries for individual work items, makes us clearly see that main
thread went idle instead of picking up available work items here..?

And in the evacuate copy phase, for some reason, TaskScheduler didn’t schedule the 4th task
on the extra worker?

This might have been a background tab at background OS priority, is the kernel somehow
restricting the number of active threads in a background process? Note to self: would be nice to
add more details to tracing around backgrounding.

https://drive.google.com/file/d/1prrkIlNApLNeu-ppL_5PQT8a2opgKubb/view?usp=sharing

v CrRendererMain

o

‘main thread finally

4 tasks, 4 items, e eiiro ke late to the party, few
v but no work items left 4 tasks, 203 iter}s work items left

- 2 items squished at end here..?

v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

4th task scheduled late
here, not cancelled yet
but no work left

v TaskSchedulerForegroundWor

1 item selected. | V8 siice (1)

Title MajorGC.
Category devtools.timeline,v8
User Friendly Category ~ gc

Start 35,505.276 ms
Wall Duration 15.848 ms
GPU Duration 9.974ms
Self Time 1111 ms
GPU Self Time 0206 ms

v Args

usedHeapSizeBefore 111402280
pe "atomic pause”
usedHeapSizeAfter 108704568

Evacuate Copy work items too coarse

Poor distribution of workload (2.5ms evacuate_copy, 0.5ms contributed by main thread and
most other workers).

E ez ot s

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

Main thread blocks on concurrent marking workers when
MajorGC kicks in without joining them

If incremental (concurrent) marking happens to be under way. MajorGC begins with the main
thread blocking on its completion, without helping workers. This can be particularly problematic

https://drive.google.com/file/d/1On8ZUs6qwT1UnrvG3hxgBgNx79VKKON-/view?usp=sharing
https://drive.google.com/file/d/11si1qvQUhRi1jMPNTzgJpqp3D-yFKOf7/view?usp=sharing

on ARM where we know the main thread tends to be on a BIG core while the workers are
usually on little workers.

ey

> Chrome_ChildiOThread
* Compositor

> ScriptStreamer thread

» TaskSchedul

» TaskSchedul dWor
+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

TaskSchedulerForegroundWorker
+ TaskSchedulerForegroundWor

Concurrent Marking could be more aggressive

It currently only uses num_cores/2. A change of mine accidently brought this down to
(num_cores-1)/2 and we saw regressions on many perf graphs (probably down from 2 to 1
cores as machines typically have 4 cores. This was recovered but | now assume that using
(num_cores-1 == 3) cores for concurrent marking would also result in further improvements.
Need to have smaller/preemptable work items first | assume however?

Pausing concurrent marking steals the workers from the pool

Fixing this will also allow us to be more aggressive with concurrent marking.
While this screenshot only shows a 6ms MinorGC with two inactive workers, it shows what'’s
happening and one could imagine much worse scenarios of this happening in the wild.

https://drive.google.com/file/d/1z2ELdYK5xtKF5wi0b5qVDbOpt3_TQKIo/view?usp=sharing
https://chromeperf.appspot.com/group_report?bug_id=809961

|« 6.338 ms —=|

v Renderer (pid 10112): Google Maps, uptime:427s
v CrRendererMain

Chrome_ChildlOThread (IRAREE | | [l | | | ||

> Compositor I ' - - I| ‘ | l . \ l “' l !
CompositorTileWorker1/12080 [|

CompositorTileWorker2/4436 = |]

CompositorTileWorkerBackgrou. ..
> DedicatedWorker thread

TaskSchedulerBackgroundBloc...
TaskSchedulerBackgroundWorker
» TaskSchedulerForegroundBloc
v TaskSchedulerForegroundWor \

TaskSchedulerForegroundVWorker
v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

TaskSchedulerServiceThread

Suspiciously inactive EVACUATE_COPY

CPU idle for 21/28ms on main thread and worker threads.

https://drive.google.com/file/d/1QvELvCwGLGwtTP8-Olo_CYBsVCdLXN1w/view?usp=sharing

browse:social-facebook [1][view Options [EVACUATE_coPY [«
|56.000 ms 58,100 ms |58}110 ms
28.016 ms |

» CrRendererMain

VB.GC_MC_EVACUATE_COPY

» Chrome_ChildlOThread
= Latency::ScrollUpdate |
1

= Compositor
CompositorTileWorker1/29812
CompositorTileWorkerBackgrou. . |
WorkerSchedulerldlePeriod I LongoeeetsF v [ot e
» File thread
= GpuMemoryThread |
= Memorylnfra
\WorkerSchedulerldlePeriod LongifeReroeFaseed (i Aokt
» ScriptStreamer thread
TaskSchedulerForegroundBlock

v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor I |

v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

* TaskSchedulerForegroundWor |

1 item selected. Slice (1)

Title V8.GC_MC_EVACUATE_COPY
Category dizabled-by-default-vg.gc

User Friendly Category other

Start 56,082.478 ms
‘Wall Duration 28.016 ms
CPU Duration T7.222 ms
Self Time 1.678 ms

CPU Self Time 0.247 ms.

https://drive.google.com/file/d/1kLfH1dM5TOJbiD2v_KJsxWXakpd2k-7q/view?usp=sharing

Finer grain

browse:news:cnn

178,760 ms. 73770 ms 1173780 ms 1175790 ms

~ Chrome_ChildlOThread

» Latency: ScrollUpdate

= Compositor L

ZompositorTileWorker1/14479

NorkerSchedulerldlePeriod e

> File thread
» GpuMemoryThread
» Memorylnfra

NorkerSchedulerldlePeriod I

= ScriptStreamer thread
raskSchedulerForegroundBlock.
v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

v TaskSchedulerForegroundWor

41.298 ms

VB.GC_MC_EVACUATE_COPY

LonglalePe iodPaused (Did Not Einish)

LangldlePeriodPaused (Did Not Finish)

1item selected. | Sice (1)

Title V8 GC_MC_EVACUATE_COPY
Category disabled-by-gefault-v8.ge

User Friendly Category ~ other

start 173,756 829 ms
Wall Duration 41298 ms
CPU Duration 20521 ms
Seff Time 2815ms
CPU Self Time 0330ms

Even finer grain evacuate copy steps (some interrupted, some 100% CPU)

Interesting that in some slow steps : EvacuateVisitorBase::RawMigrateObject completes early.

dWor

dWor

dWor

Analysis

https://drive.google.com/file/d/1FKZHkXtWK2fZCk_3PClPcbpzKilnbuOr/view?usp=sharing
https://drive.google.com/file/d/1n1Y7kR0jkRE0Hw8e4ZMp--WvZrTaugfZ/view?usp=sharing
https://docs.google.com/document/d/1pPJX6NAl-I-CXmm64NIpJh2eT1EwNEgy2izpZayWu-8/edit

Broader view

s pessaps pessers pesmre pesseps peosps pers g prosps posers

+ TaskSchedulerF oregroundWor

+ TaskSchedulerForegroundWor

» TaskSchedulerForegroundWor

BIG.little GC priority inversion

The main thread is on a BIG core along with one worker (seems like). 4 workers our on little
cores and the main thread ends up waiting on them.

e — [i Ot [¢
I =

(e prren e jacy e \EAET [t s e AT

V3 GC_AC_EVAGUATE COPY-

+ Chrome_ChildiOThread

» Latency: ScrollUpdate ‘ ‘
» Compositor
CompositorTileWorker1/8056
CompositorTileWorkerBackgrou... |
WorkerSchedulerldiePeriod [LonpeParoPauses O ot Fnen)
» File thread

* GpuMemoryThread =

morylnr:
WorkerSchedulerldiePeriod

> ScriptStreamer thread
TaskSchedulerForegroundBlock

+ TaskSchedulerForegroundWor
+ TaskSchedulerForegroundWor
4 LITTLE cores

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor
BIG ?

I

4 item selected. | Sice (1)
Tile V2.GC_MC_EVACUATE_COPY
Category dsabled-by-defaut-va oc
User Friendly Category other
Start T745010ms
Wall Duraton 9787 ms
cPU Duration s478ms
serTime a102ms
cPUSeTme 0309 ms

Solution #2

Preempt concurrent markers when Scavenge kicks in. Previously we would pause concurrent
marking but wouldn’t yield the worker thread back to the pool as such Scavenge would typically
not have workers to help it.

https://drive.google.com/file/d/1gxClws5M79K01DNPztP4lr9xNeIvL_2t/view?usp=sharing
https://drive.google.com/file/d/1zH7PZkocrCORQLgg_Gr8E0FHeFjC5P3Y/view?usp=sharing

15844500 s 115645000 s 15845500

15842500 s 15843000 s |15843500 s 15844009 s

Chrome_ChildlOThread

» Compositor
CompositorTileWorker1/7728
CompositorTileWorker2/15200
TaskSchedulerBackgroundBloc...
TaskSchedulerBackgroundWorker
TaskSchedulerForegroundBlock.

v TaskSchedulerForegroundWor

1]
I
__BRNY

Here’s another interesting trace which shows non-GC related tasks contending for the workers
as well. Ideally these would be pieced in finer grained tasks to be able to yield to high-priority
main thread blocking scavenge tasks.

I Jp2ss s |2r0ps |e2rts |p2r2gs |2r3ps |p2raps |2rsips |e2rsips |p2rrps

v TaskSchedulerForegroundWor |

v TaskSchedulerForegroundWor

Chrome_ChildIOThread 1

» Compositor ! L |
CompositorTileWorker1/11764
CompositorTileWorker2/14524
CompositorTileWorkerBackgrou...
> DedicatedWorker thread
TaskSchedulerBackgroundBloc...
TaskSchedulerBackgroundWorker
TaskSchedulerForegroundBlock

' TSSKSChEdmerForegmundWO’_
R ‘_

v TaskSchedulerForegroundWor

https://drive.google.com/file/d/1RBvf0OnRhhzP_6KAtX89SbKHlhXwCopc/view?usp=sharing
https://drive.google.com/file/d/1C2xWqcI68SD6ITeStFcAYzpIfJzQLA1X/view?usp=sharing

Related Tracing Improvements

Flow events for TaskScheduler tasks

» Chrome_ChiiOThread
+ Compositor

» ScriptStreamer thread
+ TaskSchedulerForegroundBloc
» TaskSchedulerForegroundWor
+ TeskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

+ TaskSchedulerForegroundWor

TaskSchedulerForegroundWorker
+ TaskSchedulerForegroundWor

+ TeskSchedulerServiceThread

https://drive.google.com/file/d/1qCQ7kC4mSm3YOQP4-5fNdHLvhwGQl8Vw/view?usp=sharing

	V8 GC Parallelization Issues
	Issues #1
	Main thread not contributing to evacuate
	Main thread idle for 50% of a 14ms GC
	Slow GC in one isolate because other isolate stole all workers
	Not enough workers for parallel marking
	Other operations (i.e. all but evacuate copy) aren’t desched so it doesn’t appear to be kernel/test machine’s fault

	Solution #1
	Smoother distribution of assignments in task array

	Issues #2
	Many work items, not enough tasks
	Scavenger step with 23 work items gets only 2 tasks
	Poor sharding of Scavenger work (5 large items, 1 task)
	Poor latency in otherwise properly sharded Scavenge (4 tasks)
	Main thread suspiciously idle for 6ms during 15ms MajorGC (CPU not going above 50% and work items available)
	Evacuate_Copy work items too coarse
	Main thread blocks on concurrent marking workers when MajorGC kicks in without joining them
	Concurrent Marking could be more aggressive
	Pausing concurrent marking steals the workers from the pool
	Suspiciously inactive EVACUATE_COPY
	Finer grain
	Even finer grain evacuate copy steps (some interrupted, some 100% CPU)
	Broader view

	BIG.little GC priority inversion

	Solution #2
	Related Tracing Improvements
	Flow events for TaskScheduler tasks

