
PUBLIC 

V8 GC Parallelization Issues 
Author: gab@ 

Last update: 2018-01-23 
 

This document investigates issues in Chrome 66.0.3328.2 with parallel GC where we could do 
better in V8 (with or without the collaboration of the TaskScheduler). 
 
For a broader description of the parallel work being submitted to TaskScheduler by V8, refer to 
this document. 
 
Full traces can be downloaded here on demand. 
 
Tip: each bar in the trace view is colored with a darker part whose size is proportional to the 
time spent running on the physical CPU (as opposed to wall-time). 

Issues #1 

Main thread not contributing to evacuate 
GC_MC_EVACUATE_COPY on the main thread kicks off parallel tasks but doesn’t contribute 
itself: 

https://docs.google.com/document/d/1Kl8XNkdRiEls2kWDznARrW2LBAYpw2BMO1DvPtLGq7M/edit#
https://drive.google.com/drive/folders/0B9wXJ4IPPZBAdmFONXlkYzhvNUU?usp=sharing


 
 
Here’s another one where it managed to contribute but was still idle for 95% of it (0.05ms CPU 
time vs 1ms wall time). 
 

https://drive.google.com/file/d/1ygDS2JnS-kcPWLqrrO91NoyF_TytZFvV/view?usp=sharing


 

Main thread idle for 50% of a 14ms GC 
This would be okay if all threads were descheduled (e.g. because this is a background tab 
running at background process priority). But this isn’t the case because workers are getting a 
full CPU load (and the rest of the trace shows nothing is happening in other chrome processes). 

https://drive.google.com/file/d/1C9JDm3yAFYcMMMTHqM9ISWGAXNwiDV4E/view?usp=sharing


 
 
 

Slow GC in one isolate because other isolate stole all workers 
In this case it’s a worker thread’s GC being slow because main thread is doing concurrent 
sweeping, but it could be the opposite (main thread slowed down by worker thread’s isolate; and 
any concurrent operation can technically be problematic). 
 

https://drive.google.com/file/d/1PHeAwHkFztjqFiIElP9v65XneByV5B8X/view?usp=sharing


 
 

Not enough workers for parallel marking 
This is a 4-core machine and one core is unutilized for an 8ms marking phase in a 12ms 
MajorGC (note to self: we should probably make “num workers == num cores - 1” since main 
thread should always be busy). 

https://drive.google.com/file/d/1tuR__1KSIxHL3m_uLsYkQgg5GVNUz4tb/view?usp=sharing


 

Other operations (i.e. all but evacuate copy) aren’t desched so it doesn’t 
appear to be kernel/test machine’s fault 

 
 

https://drive.google.com/file/d/1Ao5ww3rBWS_tmscvUTVGhEy3YFjafzzf/view?usp=sharing
https://drive.google.com/file/d/1YFC8lh67rCEQOMA2_A8i7BlFw_NHkCma/view?usp=sharing


Solution #1 

Smoother distribution of assignments in task array 
Discovered that the algorithm to assign job to each worker resulted in a lot of overlap (and 
hence in the main thread often merely getting to contend with other workers assigned the same 
workload and already ahead of it). 
In see below we see change’s effect on dev machine: main thread contributes full portion of its 
assignment (but finishes much earlier in this case so still waits but definitely better overall -- and 
less contention). 
 



 
 

https://drive.google.com/file/d/1FE7oeG0JSFDdMMWkHCKLRxJxa-hUdcx-/view?usp=sharing


Issues #2 

Many work items, not enough tasks 
Aaah, misconfiguration issue… (fixed: CL1, CL2). Had tweaked TaskScheduler to have one less 
worker than cores (assuming busy main thread as noted above). But GC was using 
“NumAvailableBackgroundThreads()” as a signal for “num cores”. Manually doing these 
workload computations on opposite ends of the codebase is error-prone… hinting once again 
that it’d be much simpler to have a job’s API exposed by TaskScheduler directly. 

 
 

Scavenger step with 23 work items gets only 2 tasks 
Note: Have anecdotally seen Scavenge steps with ~160 work items use only 1 task (because 
task count is based on page size -- may want to revisit that eventually). 

https://chromium-review.googlesource.com/c/v8/v8/+/911670
https://chromium-review.googlesource.com/c/v8/v8/+/904662
https://drive.google.com/file/d/16fcbkeExi1gHTHVDEtEEZiTJSneeJYw7/view?usp=sharing


 
 

Poor sharding of Scavenger work (5 large items, 1 task) 
Lots of desched, inefficiently fetching pages from RAM one by one in a single task? 

 
 

https://drive.google.com/file/d/1aw1NMQMBnFSYAZ8Lm8RCXUe6BoORnZDY/view?usp=sharing


Poor latency in otherwise properly sharded Scavenge (4 tasks) 
Suspicious… added more task_scheduler tracing events to diagnose this if it happens again… 

 
 

Main thread suspiciously idle for 6ms during 15ms MajorGC (CPU 
not going above 50% and work items available) 
Note: Recently added trace entries for individual work items, makes us clearly see that main 
thread went idle instead of picking up available work items here..? 
And in the evacuate copy phase, for some reason, TaskScheduler didn’t schedule the 4th task 
on the extra worker? 
This might have been a background tab at background OS priority, is the kernel somehow 
restricting the number of active threads in a background process? Note to self: would be nice to 
add more details to tracing around backgrounding. 

https://drive.google.com/file/d/1prrkIlNApLNeu-ppL_5PQT8a2opgKubb/view?usp=sharing


 
 

Evacuate_Copy work items too coarse 
Poor distribution of workload (2.5ms evacuate_copy, 0.5ms contributed by main thread and 
most other workers). 

 
 

Main thread blocks on concurrent marking workers when 
MajorGC kicks in without joining them 
If incremental (concurrent) marking happens to be under way. MajorGC begins with the main 
thread blocking on its completion, without helping workers. This can be particularly problematic 

https://drive.google.com/file/d/1On8ZUs6qwT1UnrvG3hxgBgNx79VKKON-/view?usp=sharing
https://drive.google.com/file/d/11si1qvQUhRi1jMPNTzgJpqp3D-yFKOf7/view?usp=sharing


on ARM where we know the main thread tends to be on a BIG core while the workers are 
usually on little workers. 

 
 

Concurrent Marking could be more aggressive 
It currently only uses num_cores/2. A change of mine accidently brought this down to 
(num_cores-1)/2 and we saw regressions on many perf graphs (probably down from 2 to 1 
cores as machines typically have 4 cores. This was recovered but I now assume that using 
(num_cores-1 == 3) cores for concurrent marking would also result in further improvements. 
Need to have smaller/preemptable work items first I assume however? 
 

Pausing concurrent marking steals the workers from the pool 
Fixing this will also allow us to be more aggressive with concurrent marking. 
While this screenshot only shows a 6ms MinorGC with two inactive workers, it shows what’s 
happening and one could imagine much worse scenarios of this happening in the wild. 

https://drive.google.com/file/d/1z2ELdYK5xtKF5wi0b5qVDbOpt3_TQKIo/view?usp=sharing
https://chromeperf.appspot.com/group_report?bug_id=809961


 
 

Suspiciously inactive EVACUATE_COPY 
CPU idle for 21/28ms on main thread and worker threads. 

https://drive.google.com/file/d/1QvELvCwGLGwtTP8-Olo_CYBsVCdLXN1w/view?usp=sharing


 

https://drive.google.com/file/d/1kLfH1dM5TOJbiD2v_KJsxWXakpd2k-7q/view?usp=sharing


Finer grain 

 

Even finer grain evacuate copy steps (some interrupted, some 100% CPU) 
Interesting that in some slow steps : EvacuateVisitorBase::RawMigrateObject completes early. 

 
 
Analysis 

https://drive.google.com/file/d/1FKZHkXtWK2fZCk_3PClPcbpzKilnbuOr/view?usp=sharing
https://drive.google.com/file/d/1n1Y7kR0jkRE0Hw8e4ZMp--WvZrTaugfZ/view?usp=sharing
https://docs.google.com/document/d/1pPJX6NAl-I-CXmm64NIpJh2eT1EwNEgy2izpZayWu-8/edit


Broader view 

 

BIG.little GC priority inversion 
The main thread is on a BIG core along with one worker (seems like). 4 workers our on little 
cores and the main thread ends up waiting on them. 

 

Solution #2 
Preempt concurrent markers when Scavenge kicks in. Previously we would pause concurrent 
marking but wouldn’t yield the worker thread back to the pool as such Scavenge would typically 
not have workers to help it. 
 

https://drive.google.com/file/d/1gxClws5M79K01DNPztP4lr9xNeIvL_2t/view?usp=sharing
https://drive.google.com/file/d/1zH7PZkocrCORQLgg_Gr8E0FHeFjC5P3Y/view?usp=sharing


 
 
Here’s another interesting trace which shows non-GC related tasks contending for the workers 
as well. Ideally these would be pieced in finer grained tasks to be able to yield to high-priority 
main thread blocking scavenge tasks. 

 

https://drive.google.com/file/d/1RBvf0OnRhhzP_6KAtX89SbKHlhXwCopc/view?usp=sharing
https://drive.google.com/file/d/1C2xWqcI68SD6ITeStFcAYzpIfJzQLA1X/view?usp=sharing


Related Tracing Improvements 

Flow events for TaskScheduler tasks 

 
 

https://drive.google.com/file/d/1qCQ7kC4mSm3YOQP4-5fNdHLvhwGQl8Vw/view?usp=sharing

	V8 GC Parallelization Issues 
	Issues #1 
	Main thread not contributing to evacuate 
	Main thread idle for 50% of a 14ms GC 
	Slow GC in one isolate because other isolate stole all workers 
	Not enough workers for parallel marking 
	Other operations (i.e. all but evacuate copy) aren’t desched so it doesn’t appear to be kernel/test machine’s fault 


	Solution #1 
	Smoother distribution of assignments in task array 

	Issues #2 
	Many work items, not enough tasks 
	Scavenger step with 23 work items gets only 2 tasks 
	Poor sharding of Scavenger work (5 large items, 1 task) 
	Poor latency in otherwise properly sharded Scavenge (4 tasks) 
	Main thread suspiciously idle for 6ms during 15ms MajorGC (CPU not going above 50% and work items available) 
	Evacuate_Copy work items too coarse 
	Main thread blocks on concurrent marking workers when MajorGC kicks in without joining them 
	Concurrent Marking could be more aggressive 
	Pausing concurrent marking steals the workers from the pool 
	Suspiciously inactive EVACUATE_COPY 
	Finer grain 
	Even finer grain evacuate copy steps (some interrupted, some 100% CPU) 
	Broader view 

	BIG.little GC priority inversion 

	Solution #2 
	Related Tracing Improvements 
	Flow events for TaskScheduler tasks 


