Agenda

The focus topic is packaging. Others will be working on additional projects as well. See the Discourse
link for more information. Non-Kitwareans are welcome to attend one of our offices (KHQ-Clifton Park);
(KRS-Chapel Hill); (KSW-Santa Fe); and (KEU-Lyon, France) — but please let us know you are coming
so we can order you lunch. Or join via Google Hangout.

9:00 Master of Ceremonies Dave DeMarle kicks it off
(talking about goals & process; focus on packaging)

Project Work

11:30 Dave leads a discussion on VTK Next
(future directions for VTK)

Working Lunch - lunch provided
Project Work

Room is available until 4:00pm.

Attendees:
KHQ
Sankhesh
D DeMarle
Will
Aylward
Berk
TJ
Kyle
Ben
Sean McBride
Utkarsh
Lipa

KRS
Ken
Cory
JC
Thompson

https://discourse.vtk.org/t/a-vtk-hackathon-on-november-6-2019/1896
https://meet.google.com/eph-gncs-bwr

McCormick
Forrest
Hastings

KEU
Joachim
Michael
Nicolas
Charles
Max

KSW
Sebastien

Previous VTK Hackathons:

Feb 2013 - “dashathon”
Feb 2014 - “coveragathon”
Oct 2014 - “bugathon”

Jul 2016 - “bugathon 2”
April 2017 - “examplethon”
Sept 2017 - “depracathalon”
Oct 2018 - “mergathon”

April 2019 - “mergathon 2”

® NGO WN =

Today Nov 2019 - ~paekathen- yackathon more like it

You are free to work on any topic you like. For minor items see the issue tracker, for bigger items see
the discussion list for this afternoon.

Please do partake in the mindshare via google hangout and discourse. As usual, the hope is that if we
get enough people focussed together we can make significant inroads on something important.

VTK Contribution guide: https://gitlab.kitware.com/vtk/vtk/blob/master/CONTRIBUTING.md

Ideally we will end up today with a new VTK package somewhere, tested no less than nightly and
submitting to VTK dashboards.

Back in the day, part of VTK’s success was that it was comparatively easy to get started with.

http://kitware20.rssing.com/browser.php?indx=11804159&item=4
https://blog.kitware.com/the-second-vtk-hackathon/
https://blog.kitware.com/vtk-issue-hackathon/
https://blog.kitware.com/another-vtk-hackathon/
http://vtk.1045678.n5.nabble.com/VTK-hackathon-7-October-22nd-td5748794.html
https://discourse.vtk.org/t/vtk-hackathon/662
https://discourse.vtk.org/t/a-vtk-hackathon-on-november-6-2019/1896
https://gitlab.kitware.com/vtk/vtk/issues
https://docs.google.com/document/d/1yYlYNtA_7-N4Ies7ij5uqA-lh5ZpyjF6pcZqMLOHKhU/edit#heading=h.11k0e6z2j6jj
https://gitlab.kitware.com/vtk/vtk/blob/master/CONTRIBUTING.md
https://open.cdash.org/index.php?project=VTK

https://vtk.org/Wiki/VTK_Get The_Source_Code_Via_WinCVS
Today VTK is just as easy to get started with! Standards have improved and people expect a lot more

today.

Kitware’s focus is primarily developing new features for customers, many of whom use VTK only
indirectly.

Users (especially new users who are considering VTK) don’t want to get bogged down with technical
issues of the code construction. They need to quickly evaluate what it can do for them.

Fortunately volunteer packagers have picked up much of the slack.
e debian - link please

redhat - https://koji.fedoraproject.org/koji/buildinfo?buildID=1404601

homebrew - https://github.com/Homebrew/homebrew-core/blob/master/Formula/vtk.rb
macports

fink

cygwin

mingw - https://github.com/msys2/MINGW-packages/commits/master/mingw-w64-vtk
Maven - hitps://qgitlab.kitware.com/vtk/vtk/blob/master/Wrapping/Java/README .txt
PyPi

Conda - link please

Windows SDK (have to search old mailing list)

The problem:
there are a lot of platforms (OS & Language) x
there are a lot of options when you configure VTK x
there are a lot of dependencies x
there are a lot of VTK versions.

Ideally it would be trivial for a new user to get up and running with the latest release on any popular
platform. Ideally it would also be trivial for dependent applications to import VTK.

Questions to be answered:
1. What specifically do we need to do to make packaging straightforward?
2. How do we extend our regression testing infrastructure to make sure it stays working?
3. What platforms do we need to support better and how is the package management system
structured there?

Experiences from Packaging People:

DeMarle - vtkPython.exe (standalone vtk python interpreter)
* when waslis the vtk packaging project in active development?
VTK 7.x (2016)

https://vtk.org/Wiki/VTK_Get_The_Source_Code_Via_WinCVS
https://koji.fedoraproject.org/koji/buildinfo?buildID=1404601
https://github.com/Homebrew/homebrew-core/blob/master/Formula/vtk.rb
https://github.com/msys2/MINGW-packages/commits/master/mingw-w64-vtk
https://gitlab.kitware.com/vtk/vtk/blob/master/Wrapping/Java/README.txt

* where is the repository/branch and top level doc?
https://gitlab.kitware.com/vtk/vtk-superbuild/commits/master - a fork of ParaView’s superbuild
* where is/was the package made?

one linux, one mac, and one windows box in Dave’s office

* where does the produced package get pushed to/pulled from?

vtk.org downloads page

* where is/was the CI?

none - it was manually run only during release candidate cycle

* what is the current state of the project?

dead - It didn’t have sufficient Cl to sustain it and it didn’t cooperate with system python.

Sebastien - Maven (Java)

* when wasl/is the vtk packaging project in active development?
e VTK7.x(2016)

* where is the repository/branch and top level doc?
o hitps://gitlab.kitware.com/vtk/vtk/blob/master/\WWrapping/Java/README .txt

* where is/was the package made?

On Linux, Windows in Ben’s office

On Mac in Seb'’s office (old mac-mini)

* where does the produced package get pushed to/pulled from?

sent to customers via Seb’s Google Drive

* where is/was the CI?

No

* what is the current state of the project?

Same as the vtk-superbuild state

Aashish - Spack ...
no VTK package, only ParaView

* when wasl/is the vtk packaging project in active development?
* where is the repository/branch and top level doc?

* where is/was the package made?

* where does the produced package get pushed to/pulled from?
* where is/was the CI?

* what is the current state of the project?

JC/Ben - PyPi
* when wasl/is the vtk packaging project in active development?
8.0,8.1, 82
update for VTK master/9.0
started 2 years ago
* where is the repository/branch and top level doc?
was -> hitps://qithub.com/KitwareMedical/VTKPythonPackage
soon vik itself can make a wheel, infrastructure to run it will be very simple

https://gitlab.kitware.com/vtk/vtk/merge_requests/5543

https://gitlab.kitware.com/vtk/vtk-superbuild/commits/master
https://gitlab.kitware.com/vtk/vtk/blob/master/Wrapping/Java/README.txt
https://github.com/KitwareMedical/VTKPythonPackage
https://gitlab.kitware.com/vtk/vtk/merge_requests/5543

* where is/was the package made?
to set up a linux, mac and windows nightly submitter
* where does the produced package get pushed to/pulled from?
Ultimately packages will be published on PyPi
Development (aka Nightly) wheel will be published daily either on GitLab or
https://vtk.org/download/
* where is/was the CI?
it will be VTK buildbot
* what is the current state of the project?
active development, a requirement for VTK 9.0.0.rc1

Dan Lipsa - Conda
e external packagers made conda forge only for releases (Matthias Belcher v 7.0):

https://github.com/conda-forge/vtk-feedstock
e now, Kitware for LLNL Climate via Kitware (VCDAT):

https://github.com/CDAT/conda-recipes/iree/master/vtk-cdat Besides vtk-feedstock, vtk-cdat
does cross-compiling on linux (uses centos 6) and mac os (uses an old version of mac). We
should merge vtk-cdat into vitk-feedstock.

e see Conda Press project for converting conda package into pypi.

Kyle - Debian

* when wasl/is the vtk packaging project in active development?

last year VTK 8 https://salsa.debian.org/science-team/vtk8 - has not yet been accepted into
Debian

* where is the repository/branch and top level doc?

was manual at debian

Kyle’s project wrote routines that translate cpack package to a debian package

* where is/was the package made?

https://gitlab.kitware.com/debian/dh-cmake

https://qgitlab.kitware.com/debian/vtk
* where does the produced package get pushed to/pulled from? https://apt.kitware.com/

debian science team’s input - cpack’s packages not sufficient thus Kyles’s approach, need to be
more complete/consistent with copyright

* where is/was the CI?

Dashboard submitter, but it died

* what is the current state of the project?

close but not finished, needs updated for VTK 9’s cmake, needs dashboard, dh-cmake needs to
be completed (docs, acceptance into Debian) NEEDS FUNDING

Orion - Fedora
* when wasl/is the vtk packaging project in active development? Current (2019), v8.2.0, 8.1.1
At least since 2007 - vtk 5
* where is the repository/branch and top level doc? https://src.fedoraproject.org/rpms/vik
* where is/was the package made? on the Koiji build system (RedHat/Fedora)

https://github.com/conda-forge/vtk-feedstock
https://github.com/CDAT/conda-recipes/tree/master/vtk-cdat
https://salsa.debian.org/science-team/vtk8
https://gitlab.kitware.com/debian/dh-cmake
https://gitlab.kitware.com/debian/vtk
https://apt.kitware.com/
https://src.fedoraproject.org/rpms/vtk

* where does the produced package get pushed to/pulled from? See

https://fedoraproject.org/wiki/Koji for a description of Koiji

* where is/was the CI? https://koschei.fedoraproject.org/package/vtk
* what is the current state of the project? Active, only 1 issue being tracked (nVidia)

https://bugzilla.redhat.com/buglist.cai?quicksearch=%3Avik

Matt McCormick - WebAssembly
* when wasl/is the vtk packaging project in active development?
VTK WebAssembly builds have been available on DockerHub since 2019-02-05
* where is the repository/branch and top level doc?
https://github.com/thewtex/VTK/tree/emscripten-updates (these patches could be
pushed upstream)
* where is/was the package made?
https://hub.docker.com/r/kitware/itk-js-vtk
* where does the produced package get pushed to/pulled from?
https://github.com/InsightSoftwareConsortium/itk-js/tree/cdc52a35¢c2f958bd3ff5e 1ead865e78b5Seacc4c
[src/Docker/itk-js-vik
* where is/was the CI?
https://circleci.com/gh/InsightSoftwareConsortium/itk-js
* what is the current state of the project?
Done
m VTK (minus rendering) compiles to WebAssembly / Emscripten
m VTK processing pipelines can be created and executed via itk.js
m Geometry file formats can be read into vtk.js PolyData for rendering
e Want to learn VTK / WebAssembly and contribute to the community? --
pick a module and add support for it

(o}

o Next

Create a "lean" build that results in smaller binaries
Add rendering support

Add a vtkJSONDataSetReader

Incorporate into vik.js

Incorporate more Emscripten patches

Add / test multi-threading

Let’s hack, and make more notes here ...

Smaller components (a vtk core package), internal and external components would be ideal

how to structure code/projects?

how to structure cmake for the external components so they can be built independently

a technical problem with dependency’s versions and exposed VTK symbols in them ex mpi vs parallel
mpi

findpackage and components behavior, what will consumers and how to use it?

https://fedoraproject.org/wiki/Koji
https://koschei.fedoraproject.org/package/vtk
https://bugzilla.redhat.com/buglist.cgi?quicksearch=%3Avtk
https://github.com/thewtex/VTK/tree/emscripten-updates
https://hub.docker.com/r/kitware/itk-js-vtk
https://github.com/InsightSoftwareConsortium/itk-js/tree/cdc52a35c2f958bd3ff5e1ead865e78b5eacc4cd/src/Docker/itk-js-vtk
https://github.com/InsightSoftwareConsortium/itk-js/tree/cdc52a35c2f958bd3ff5e1ead865e78b5eacc4cd/src/Docker/itk-js-vtk
https://circleci.com/gh/InsightSoftwareConsortium/itk-js
https://github.com/InsightSoftwareConsortium/itk-js/issues/275
https://github.com/InsightSoftwareConsortium/itk-js/issues/187

Agenda
Conclusion

The fact that ParaView doesn’t support an external VTK is not helpful. Same for infrequent VTK
releases.

opinions -> we should make vtk easier to package for all, set up nightly regression testing for one or
two of the most important

9.0 will not release without a wheel
+ need to figure out what modules/features go under what name (we probably won't ship wheel w/
MPI enabled, but allow others to build a wheel w/ MPI... we need to find a naming scheme that
differentiates them)
+ buildbot is a big unknown

Conclusion

JUICY ITEMS TO WORK ON TODAY:
e license formatter/verifier
o Instructions for writing a formatter/verifier is here
e PyPifinish
o Rebase current branch against latest master: Jc - Done [4
o Test current branch on
m Windows: Jc
e Python 3.6:
e Python 3.7:
o Build the wheel fails with this error - Solved
m Problem was that cmake was not in the path and that
CMAKE_EXE env. Variable had to be set. Will improve
setup.py to report an informative error message.
o WrappingPythenCere vikCommonCorePython target fails to link
against pythonXY.lib
m This is due to auto linking happening in pyconfig.h. See
here
m Anissue has been reported upstream. See
https://bugs.python.org/issue38728
m To mitigate this, | suggest we ensure the link directory is
propagated.

e Python 3.8:
o previous vtk build error was due to use of 3.8.0a2 on the build
machine, switching to 3.8.0 addressed it - Solved

https://gitlab.kitware.com/utils/source-formatters
https://github.com/python/cpython/blob/519cb8772a9745b1c7d8218cabcd2f96ceda4d62/PC/pyconfig.h#L268-L285
https://bugs.python.org/issue38728
https://gitlab.kitware.com/vtk/vtk/commit/257b9d7b18d5f3db3fe099dc18f230e23f7dfbab#note_649046

o Building the wheel fails with this error - Solved
m macOS : Dave

e Python 3.6:
e Python 3.7: Done [4
e Python 3.8:

m Linux: Ben
e | suggest to use the manylinux docker images
o Update buildbot to build VTK against python 3.6, 3.7 and 3.8: Dave/Ben
m Ben notes available here
m For each MR:
e What is overhead ? Do we want this ? Or may be only 3.8 ?
o overhead of turning VTK_WHEEL_BUILD on time seems to be
minimal on my mac laptop build
e Adding a +nightly buildbot feature makes it not run for plain "Do: test’
('Do: test --nightly" is available)
m https://kwaqitlab.kitware.com/buildbot/buildbot/merge_requests/1753
o Add test to trigger wheel building: Jc ?

11:30

VTK Next

discussion list

. reference to vtk coding guidelines:
https://docs.google.com/document/d/Tnzinw-dRSJQRNi_gb8gwLL5PnkGMK2FETIQGLr10tZw/edit

2:10

SmackDown - vtkSMP vs vtk-m, how long do we keep dividing developer attention?

e What is performance on current hardware now, what will it be in the future given hardware
trends? Rumor has it that vtk-m is not as performant on CPUs now which are far more prevalent
than high end GPUs. Rumor also has it that the learning curve is much worse too. ParaView
binary has plugins for both and a timerlog, thus an easy way to get rough comparisons to get a
feel.

e No question we have to support GPUs well for the future. The question is, at what point does it
not make sense to focus any more resources on vtkSMP and write code that will have to be
rewritten?
even more outreach is needed, more vtk-m competent developers are also needed
idea: an example that adds optional vtk-m core to a coreffilter to accelerate adoption
idea: encourage paraview developers to prefer vtk-m
idea: can we write a simple parallel_for for vtk-m - no

https://kwgitlab.kitware.com/ben.boeckel/buildbot/commit/79317dbcea51f3ad29ba3d45f75e35604b523f98#note_129410
https://kwgitlab.kitware.com/buildbot/buildbot/merge_requests/1753
https://docs.google.com/document/d/1yYlYNtA_7-N4Ies7ij5uqA-lh5ZpyjF6pcZqMLOHKhU/edit#heading=h.11k0e6z2j6jj
https://docs.google.com/document/d/1nzinw-dR5JQRNi_gb8qwLL5PnkGMK2FETlQGLr10tZw/edit

	Agenda
	Conclusion

