
Bundling targets by macro

Authors: brandjon@bazel.build​
Status: Draft​
Approver: comius@
Reviewers: tetromino@, susinmotion@, danmullow@, murali42@, lberki@​
Created: 2025-01-30​
Updated: 2025-02-01
Discussion: #25168

Please read Bazel Code of Conduct before commenting.

Overview
This doc proposes an extension to the visibility system for symbolic macros. Essentially, it
makes it so that if foo is the name of a macro instance, then passing foo to another macro
will allow the callee to see any of foo’s exported targets. This is a relaxation of the current
behavior, which is that the callee can see foo’s main target but not auxiliary targets like
foo_aux.

Allowing this kind of access is necessary for macros whose targets are accessed indirectly
by munging their main target’s name. This removes a pain point from using symbolic
macros, and makes migration from legacy macros more feasible.

This doc also outlines two rejected alternatives.

Problem
To illustrate the current state, suppose we have a macro, shadow_library, that wraps
cc_library and that also creates a shadow graph of auxiliary targets mirroring its deps
structure.

//shadow_library/defs.bzl

def _shadow_library_impl(name, visibility, deps):

 # Main target (“foo”), exported.

 cc_library(

 name = name,

 visibility = visibility,

 deps = deps,

https://github.com/brandjon
https://github.com/bazelbuild/bazel/discussions/25168
https://github.com/bazelbuild/bazel/blob/master/CODE_OF_CONDUCT.md

)

 # Auxiliary target (“foo_aux”), also exported as a public api.

 cc_library(

 name = "%s_aux" % name,

 visibility = visibility,

 deps = ["%s_aux" % d for d in deps],

)

shadow_library = macro(…)

Now suppose we have a second macro that interoperates with shadow_library but which
adds new functionality:

//extension_library/defs.bzl

load(“//shadow_library:defs.bzl”, “shadow_library”)

def _extension_library_impl(name, visibility, deps):

 # Produces “foo” and “foo_aux” as before.

 shadow_library(

 name = name,

 visibility = visibility,

 deps = deps,

)

 # Also produces “foo_ext” and “foo_aux_ext” that depend on the deps’ main and

 # auxiliary targets, respectively.

 cc_library(

 name = “%s_ext" % name,

 visibility = visibility,

 deps = deps,

)

 cc_library(

 name = “%s_aux_ext” % name,

 visibility = visibility,

 deps = [“%s_aux” % d for d in deps],

)

extension_library = macro(…)

Finally, in the BUILD file, we have:

//pkg/BUILD

load(“//shadow_library:defs.bzl”, “shadow_library”)

load(“//extension_library:defs.bzl”, “extension_library”)

All targets are private to //pkg.

shadow_library(

 name = “A”,

)

shadow_library(

 name = “B”,

 deps = [“:A”],

)

extension_library(

 name = “C”,

 deps = [“:A”],

)

The two dependency edges B -> A and B_aux -> A_aux are allowed because all four
targets are declared in the same place, //shadow_library. This even applies to the two
edges C -> A and C_aux -> A_aux, despite the added intermediary macro.

The same can’t be said for the edge C_ext -> A, since the consuming location
//extension_library does not match A’s actual visibility of {//pkg,
//shadow_library}. But thanks to visibility delegation, this dependency is allowed anyway 1

since the caller (//pkg) passed A in as an attribute value and the caller is itself permitted to
see A.

Yet delegation doesn’t help for the last edge, C_aux_ext -> A_aux. Morally, the permission
to see A_aux should have also been delegated by passing in A to extension_library. But
the visibility system doesn’t recognize that A_aux is associated with A. This was always a
known weakness in the design of Macro-Aware Visibility, one that we now aim to correct;
we are seeking a method for bundling A_aux with A.

There are two important constraints on any solution we choose.

1.​ A bundling mechanism must uphold visibility protection. This means that either we
need to validate A_aux’s visibility against the caller’s location at analysis time, or else
we need to ensure by construction that A_aux’s visibility is a superset of A’s visibility.
(I say “ensure”, because actually validating it isn’t possible in the loading phase since
package groups aren’t expanded.)

2.​ We want our design to add no new skyframe edges. This means that we don’t want
to load A’s configured target as part of the processing of A_aux’s visibility check. It
also means we don’t want target declarations to require information from any other
target declaration in a not-currently-loaded symbolic macro.

1 A target’s actual visibility is the visibility passed in, unioned with the target’s declaration location.

Proposal
A new visibility atom, //visibility:exported, is introduced. When it is used in a
visibility attribute of a target or macro instance, it is immediately expanded by replacing
it with the visibility of the macro that the declaration appears within, or by the package’s
default_visibility if the declaration is not inside any symbolic macro. (The new atom
never appears as an actual value in a visibility attribute.) In addition, the target or macro
is conceptually marked as exported.

The new delegation semantics are that passing a macro around as a label will delegate all
exported targets of the macro that the caller has visibility on. This applies transitively
through exported submacros as well. By only delegating exported targets, we avoid
inadvertently exposing implementation details when the caller happens to be in the same
package as the macro’s definition. By only delegating targets the caller can see, we avoid
violating visibility in situations where the main target is visible to places that the auxiliary
target is not.

<TODO: Work out exact error behavior. Is it legal if the caller can see foo_ext but not
foo? Is it an error if the caller can’t see either but the callee has independent visibility
permission over foo_ext?>

Within a macro implementation function, the visibility parameter’s behavior is modified
to always take on the value [“//visibility:exported”]. This ensures that the pattern of
declaring exported targets with `visibility = visibility` continues to work while
opting into the new export behavior. It removes the ability for macros to infer what macro
called them by inspecting the visibility attribute, but this was an antipattern anyway. It
should not break the vast majority of macros.

Since the value of the visibility attribute is now a constant, we can consider making it
optional in the macro’s signature, omitting it if not present as a keyword argument (not
counting **kwargs). It could even be deprecated and removed entirely, although this would
become yet another minor difference between the bodies of symbolic and legacy macros.

Although it is discouraged to use //visibility:public within a macro, assigning a target
this visibility level will also mark it as exported for the purposes of delegation. This preserves
//visibility:public’s position at the top of the visibility lattice.

<TODO: Will this interact poorly with tooling that introspects target visibilities via
blaze query? That is, by expanding away //visibility:exported from source code in .bzl
files?>

<TODO: It seemed like we were so close to a definition of delegation that didn’t
change depending on the caller’s location. Is there a way to make the set of delegated
targets constant and only check whether the caller can see the main target?>

Application to shadow_library example
The definitions of the two macros are unchanged. The example “just works”; the edge
C_aux_ext -> A_aux is now permitted because the BUILD file passed in A, A_aux is
exported from A, and //pkg can see A_aux.

Application to legacy macros
Targets are bundled only by appearing in a common symbolic macro. Nonetheless, targets
of a legacy macro can be bundled under new names by defining alias targets for them
underneath a symbolic macro instance. In fact, the process can be streamlined by defining
a single alias_group symbolic macro that can be instantiated as needed.

This does require enumerating each target to be bundled. There is no way to alias an entire
macro for this purpose, since bundling is a loading-phase concept and alias resolution
requires the analysis phase.

Alternatives
We considered two main alternatives before this one. The first is based on fine-grained
control over which targets are eligible for delegation. Ultimately, that approach did not
generalize well when rules are substituted by macros. The second is a simpler form of the
proposal, where delegation is maximally applied within a macro without any need for a new
visibility atom. But this leaks a macro’s implementation details a bit too easily.

Explicit declarations of bundling
Under this approach, a new universal attribute is defined, called bundled_with. Its type is a
no-dep label that must refer to another target declared in the current symbolic macro
instance. When the declaration of B says that it is `bundled_with = A`, the effect is that 1)
B is delegated whenever A is passed to a macro, and 2) A’s visibility is implicitly unioned to B’s
visibility, so that B is guaranteed to be visible anywhere A is. (This unioning is done in the 2

loading phase, hence why A must be in the same symbolic macro as B.)

Bundling is transitive: If C has `bundled_with = B` then C can be delegated by passing
either A or B. Bundling does not follow alias targets.

This approach is certainly powerful enough to address the shadow_library use case. It can
also work with legacy macros since the bundling relationship is explicit rather than inferred
by macro call structure. But there are several large drawbacks:

●​ It requires a new universal attribute name for all targets.

2 An earlier version inverted the relationship so that A would declare that it `bundles = [B]`. This
was very bad for self-contained definitions and for respecting internal targets’ visibility.

●​ It creates a distinction between bundling a macro target vs merely exporting it.
Contrast this with the above proposal, where the distinction between being
exported vs merely being visible to the caller is unlikely to come up in practice.

●​ It’s unclear how to generalize bundled_with to macros.
○​ If you set `bundled_with = foo` on a target, where foo is a macro

instance, is that referencing the main target of the macro? (If so, we’re
possibly creating a loading-phase dependency on evaluating foo’s macro to
get the main target’s visibility.)

○​ If you set bundled_with on a macro called foo, is that modifying foo’s main
target / submacro?

○​ If bundled_with is not supported on macros, then it becomes a hazard for
any rule author who wants to refactor their rule into a macro.

○​ What if you want a wrapping macro to extend a different bundle in the
submacro than the one that contains its main target? (How would you even
refer to other targets without evaluating the macro?)

The difficulties of applying this approach to macros led us to believe that it may be a
mistake to let macros have more than one bundle. It just doesn’t seem feasible to answer
the above questions in a consistent way, while satisfying our requirements concerning
loading phase dependencies and visibility safety. At the very least, it would be very
confusing to explain to users.

But if there can only be one bundle per macro, then it makes sense to default into that
bundle without an extra universal attribute.

Implicit bundling
The second idea was to allow a label referencing a macro’s name to delegate any target
transitively declared by the macro, so long as the caller could see that target. Effectively,
this is the solution we proposed above but without an additional //visibility:exported
atom.

There are several problems with this approach, but only one that differentiates this from the
above proposal: Any caller that happens to be in the same package as the macro has
visibility on all internal targets of the macro, and therefore delegates all those targets to the
callee. This effectively defeats visibility anywhere that the macro’s own package passes the
main target around.

The other problems that are shared with the proposed solution are that the caller may
accidentally delegate some exported targets that it didn’t intend to, and that it’s not always
obvious which targets are and aren’t delegated at a given call site.

Compatibility
Changing the value of the visibility parameter will break symbolic macros that
introspect it in any non-trivial way.

Making the visibility parameter optional, and not passed if there is only a **kwargs but no
separate keyword parameter, is a breaking change to any macro that expected it to be
included in **kwargs.

Having a //visibility:exported atom that gets expanded when used, may break tooling
and use cases that introspect the visibility attribute and feed its value back into target
declarations.

Document History

Date Description

2025-02-01 Initial version

	Bundling targets by macro
	Overview
	Problem
	Proposal
	Application to shadow_library example
	Application to legacy macros

	Alternatives
	Explicit declarations of bundling
	Implicit bundling

	Compatibility
	Document History

