

New Jersey Student Learning Standards for Mathematics Technical Revisions Crosswalk 2016 to 2023

Introduction

This document contains a crosswalk for comparison between the 2023 NJSLS-Mathematics (NJSLS-M) and the 2016 NJSLS- Mathematics. The crosswalk tables include the type(s) of revision, the 2023 NJSLS-Mathematics, and the corresponding 2016 NJSLS-Mathematics. This tool is designed to help reviewers quickly consider and compare the content of the two sets of standards.

Kindergarten

Туре	2023 NJSLS-M	2016 NJSLS-M
Indicator	K.M.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.	K.MD.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.
Indicator	K.M.A.2 Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.	K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.
New	K.M.B.3 Understand that certain objects are coins and dollar bills, and that coins and dollar bills represent money. Identify the values of all U.S. coins and the one-dollar bill.	n/a
Indicator	K.DL.A.1 Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. (Clarification: Limit category counts to be less than or equal to 10)	K.MD.B.3 Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.

Grade 1

Type	2023 NJSLS-M	2016 NJSLS-M
Text	1.0A.C.6 Add and subtract within 20,	1.0A.C.6 Add and subtract within 20,
	demonstrating accuracy and efficiency for	demonstrating fluency for addition and
	addition and subtraction within 10. Use	subtraction within 10. Use strategies such as
	strategies such as counting on; making ten	counting on; making ten (e.g.,
	(e.g., $8+6=8+2+4=10+4=14$);	8+6=8+2+4=10+4=14); decomposing a
	decomposing a number leading to a ten (e.g.,	number leading to a ten (e.g.,
	13-4=13-3-1=10-1=9); using the	13-4=13-3-1=10-1=9); using the
	relationship between addition and subtraction	relationship between addition and subtraction
	(e.g., knowing that $8+4=12$, one knows	(e.g., knowing that $8+4=12$, one knows
	12-8=4); and creating equivalent but easier	12-8=4); and creating equivalent but easier
	or known sums (e.g., adding $6+7$ by creating	or known sums (e.g., adding $6+7$ by creating
	the known equivalent $6+6+1=12+1=13$).	the known equivalent $6+6+1=12+1=13$).
Indicator	1.M.A.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object.	1.MD.A.1 Order three objects by length; compare the lengths of two objects indirectly by using a third object.
Indicator	1.M.A.2 Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the	1.MD.A.2 Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the
	object being measured is spanned by a whole number of length units with no gaps or overlaps.	object being measured is spanned by a whole number of length units with no gaps or overlaps.
Indicator	1.M.B.3 Tell and write time in hours and half-hours using analog and digital clocks.	1.MD.B.3 Tell and write time in hours and half-hours using analog and digital clocks.

Туре	2023 NJSLS-M	2016 NJSLS-M
New	1.M.C.4 Know the comparative values of coins	n/a
	and all dollar bills (e.g., a dime is of greater	
	value than a nickel). Use appropriate notation	
	(e.g., 69¢, \$10).	
New	1.M.C.5 Use dollars in the solutions of	n/a
	problems up to \$20. Find equivalent monetary	
	values (e.g., a nickel is equivalent in value to	
	five pennies). Show monetary values in	
	multiple ways. For example, show 25¢ as two	
	dimes and one nickel, and as five nickels. Show	
	\$20 as two tens and as 20 ones.	
Indicator	1.DL.A.1 Organize, represent, and interpret	1.MD.C.4 Organize, represent, and interpret
	data with up to three categories; ask and	data with up to three categories; ask and
	answer questions about the total number of	answer questions about the total number of
	data points, how many in each category, and	data points, how many in each category, and
	how many more or less are in one category	how many more or less are in one category
	than in another.	than in another.

Туре	2023 NJSLS-M	2016 NJSLS-M
Text	2.OA.B.2 With accuracy and efficiency, add and	2.OA.B.2 Fluently add and subtract within 20
	subtract within 20 using mental strategies. By	using mental strategies. By end of Grade 2,
	end of Grade 2, know from memory all sums of	know from memory all sums of two one-digit
	two one-digit numbers.	numbers.
Text	2.NBT.B.5 With accuracy and efficiency, add and	2.NBT.B.5 Fluently, add and subtract within
	subtract within 100 using strategies based on	100 using strategies based on place value,
	place value, properties of operations, and/or	properties of operations, and/or the
	the relationship between addition and	relationship between addition and subtraction.
	subtraction.	
Indicator	2.M.A.1 Measure the length of an object by	2.MD.A.1 Measure the length of an object by
	selecting and using appropriate tools such as	selecting and using appropriate tools such as
	rulers, yardsticks, meter sticks, and measuring	rulers, yardsticks, meter sticks, and measuring
	tapes.	tapes.
Indicator	2.M.A.2 Measure the length of an object twice,	2.MD.A.2 Measure the length of an object
	using length units of different lengths for the	twice, using length units of different lengths
	two measurements; describe how the two	for the two measurements; describe how the
	measurements relate to the size of the unit	two measurements relate to the size of the unit
	chosen.	chosen.
Indicator	2.M.A.3 Estimate lengths using units of inches,	2.MD.A.3 Estimate lengths using units of
	feet, centimeters, and meters.	inches, feet, centimeters, and meters.
Indicator	2.M.A.4 Measure to determine how much longer	2.MD.A.4 Measure to determine how much
	one object is than another, expressing the length	longer one object is than another, expressing
	difference in terms of a standard length unit.	the length difference in terms of a standard
		length unit.
	ı	

Туре	2023 NJSLS-M	2016 NJSLS-M
Indicator	2.M.B.5 Use addition and subtraction within	2.MD.B.5 Use addition and subtraction within
	100 to solve word problems involving lengths	100 to solve word problems involving lengths
	that are given in the same units, e.g., by using	that are given in the same units, e.g., by using
	drawings (such as drawings of rulers) and	drawings (such as drawings of rulers) and
	equations with a symbol for the unknown	equations with a symbol for the unknown
	number to represent the problem.	number to represent the problem.
Indicator	2.M.B.6 Represent whole numbers as lengths	2.MD.B.6 Represent whole numbers as lengths
	from 0 on a number line diagram with equally	from 0 on a number line diagram with equally
	spaced points corresponding to the numbers 0,	spaced points corresponding to the numbers 0,
	1, 2,, and represent whole-number sums and	1, 2,, and represent whole-number sums and
	differences within 100 on a number line	differences within 100 on a number line
	diagram.	diagram.
Indicator	2.M.C.7 Tell and write time from analog and	2.MD.C.7 Tell and write time from analog and
	digital clocks to the nearest five minutes, using	digital clocks to the nearest five minutes, using
	a.m. and p.m.	a.m. and p.m.
Indicator	2.M.C.8 Solve word problems involving dollar	2.MD.C.8 Solve word problems involving dollar
	bills, quarters, dimes, nickels, and pennies,	bills, quarters, dimes, nickels, and pennies,
	using \$ and ¢ symbols appropriately. Example: If	using \$ and ¢ symbols appropriately. Example:
	you have 2 dimes and 3 pennies, how many	If you have 2 dimes and 3 pennies, how many
	cents do you have?	cents do you have?
New	2.DL.A.1 Understand that people collect data to	n/a
	answer questions. Understand that data can	
	vary.	
New	2.DL.A.2 Identify what could count as data (e.g.,	n/a
	visuals, sounds, numbers).	
	answer questions. Understand that data can vary. 2.DL.A.2 Identify what could count as data (e.g.,	,

Туре	2023 NJSLS-M	2016 NJSLS-M
Indicator	2.DL.B.3 Generate measurement data by	2.MD.D.9 Generate measurement data by
	measuring lengths of several objects to the	measuring lengths of several objects to the
	nearest whole unit, or by making repeated	nearest whole unit, or by making repeated
	measurements of the same object. Show the	measurements of the same object. Show the
	measurements by making a line plot, where the	measurements by making a line plot, where the
	horizontal scale is marked off in whole-number	horizontal scale is marked off in whole-number
	units.	units.
Indicator	2.DL.B.4 Draw a picture graph and a bar graph	2.MD.D.10 Draw a picture graph and a bar
	(with single-unit scale) to represent a data set	graph (with single-unit scale) to represent a
	with up to four categories. Solve simple put	data set with up to four categories. Solve
	together, take-apart, and compare problems	simple put together, take-apart, and compare
	using information presented in a bar graph.	problems using information presented in a bar
		graph.
Text	2.G.A.3 Partition circles and rectangles into	2.G.A.3 Partition circles and rectangles into
	two, three, or four equal shares, describe the	two, three, or four equal shares, describe the
	shares using the words halves, thirds, half of, a	shares using the words halves, thirds, half of, a
	third of, etc., and describe the whole as two	third of, etc., and describe the whole as two
	halves, three thirds, four fourths. Recognize	halves, three thirds, four fourths. Recognize
	that equal shares of identical wholes need not	that equal shares of identical wholes need not
	have the same shape. For example, students	have the same shape.
	partition a rectangle (i.e., the whole) into three	
	equal shares, identify each of the shares as a	
	'third' and describe the rectangle as three	
	'thirds'.	

Please note the following clarification to the Number and Operations —Fractions domain included as a footnote in the New Jersey Student Learning Standards technical document. Visual fraction models include tape diagrams, number lines, and area models (See Glossary). Set models, including those defined as the whole, are excluded at this grade. Grade 3 expectations in this domain are limited to fractions with denominators 2, 3, 4, 6, and 8.

Type	2023 NJSLS-M	2016 NJSLS-M
Text	3.0A.C.7 With accuracy and efficiency, multiply	3.OA.C.7 Fluently multiply and divide within
	and divide within 100, using strategies such as	100, using strategies such as the relationship
	the relationship between multiplication and	between multiplication and division (e.g.,
	division (e.g., knowing that $8 \times 5 = 40$, one	knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$)
	knows $40 \div 5 = 8$) or properties of operations.	or properties of operations. By the end of Grade 3, know from memory all products of two
	By the end of Grade 3, know from memory all products of two one-digit numbers.	one-digit numbers.
Text	3.0A.D.8 Solve two-step word problems,	3.0A.D.8 Solve two-step word problems using
	including problems involving money, using the	the four operations. Represent these problems
	four operations. Represent these problems	using equations with a letter standing for the
	using equations with a letter standing for the	unknown quantity. Assess the reasonableness
	unknown quantity. Assess the reasonableness	of answers using mental computation and
	of answers using mental computation and	estimation strategies including rounding.
	estimation strategies including rounding.	(Clarification: This standard is limited to
	(Clarification: This standard is limited to	problems posed with whole numbers and
	problems posed with whole numbers and	having whole number answers; students should
	having whole number answers; students	know how to perform operations in the
	should know how to perform operations in the	conventional order when there are no
	conventional order when there are no	parentheses to specify a particular order)
	parentheses to specify a particular order)	(Order of Operations)
	(Order of Operations)	

Туре	2023 NJSLS-M	2016 NJSLS-M
Type Text	3.NF.A.1 Understand a fraction $\frac{1}{b}$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction $\frac{a}{b}$ as the quantity formed by a parts of size $\frac{1}{b}$. For example: If a rectangle (i.e. the whole) is partitioned into 3 equal parts, each	
	part is $\frac{1}{3}$. Two of those parts would be $\frac{2}{3}$.	
Text	3.NF.A.2a Represent a fraction $\frac{1}{b}$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $\frac{1}{b}$ and that the endpoint of the part based at 0 locates the number $\frac{1}{b}$ on the number line. For example, partition the number line from 0 to 1 into 3 equal parts, represent $\frac{1}{3}$ on the number line and show that each part has a size $\frac{1}{3}$.	3.NF.A.2a Represent a fraction $\frac{1}{b}$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $\frac{1}{b}$ and that the endpoint of the part based at 0 locates the number $\frac{1}{b}$ on the number line.
Text	3.NF.A.3a Understand two fractions as equivalent (equal) if they are the same size. Understand two fractions as equivalent if they are located at the same point on a number line.	3.NF.A.3a Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.

Type	2023 NJSLS-M	2016 NJSLS-M
Text	3.NF.A.3b Recognize and generate simple equivalent fractions by reasoning about their size, (e.g., $\frac{1}{2} = \frac{2}{4}$, $\frac{4}{6} = \frac{2}{3}$). Explain why the fractions are equivalent with the support of a visual fraction model.	3.NF.A.3b Recognize and generate simple equivalent fractions, (e.g., $\frac{1}{2} = \frac{2}{4}$, $\frac{4}{6} = \frac{2}{3}$). Explain why the fractions are equivalent, e.g., by using a visual fraction model.
Text	3.NF.A.3c Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the $3 = \frac{3}{1}; \text{ recognize that } \frac{6}{1} = 6; \text{ locate } \frac{4}{4}$ and 1 at the same point on a number line diagram.	3.NF.A.3c Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the $3 = \frac{3}{1}; \text{ recognize that } \frac{6}{1} = 6; \text{ locate } \frac{4}{4}$ and 1 at the same point of a number line diagram.
Text	3.NF.A.3d Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions with the support of a visual fraction model	3.NF.A.3d Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model
Indicator	3.M.A.1 Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.	3.MD.A.1 Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.

Туре	2023 NJSLS-M	2016 NJSLS-M
Indicator	3.M.A.2 Measure and estimate liquid volumes	3.MD.A.2 Measure and estimate liquid volumes
	and masses of objects using standard units of	and masses of objects using standard units of
	grams (g), kilograms (kg), and liters (l). Add,	grams (g), kilograms (kg), and liters (l). Add,
	subtract, multiply, or divide to solve one-step	subtract, multiply, or divide to solve one-step
	word problems involving masses or volumes	word problems involving masses or volumes
	that are given in the same units, e.g., by using	that are given in the same units, e.g., by using
	drawings (such as a beaker with a	drawings (such as a beaker with a
	measurement scale) to represent the problem.	measurement scale) to represent the problem.
	(Clarification: "Measure and estimate liquid	(Clarification: "Measure and estimate liquid
	volumes and masses" excludes compound units	volumes and masses" excludes compound units
	such as cm3 and finding the geometric volume	such as cm3 and finding the geometric volume
	of a container. "Multiplying to solve one-step	of a container. "Multiplying to solve one-step
	word problems" excludes multiplicative	word problems" excludes multiplicative
	comparison problems (problems involving	comparison problems (problems involving
	"times as much"; See Glossary, Tables 2a-2d))	"times as much"; See Glossary, Table 2))
Indicator	3.M.B.3 Recognize area as an attribute of plane	3.MD.C.5 Recognize area as an attribute of plane
	figures and understand concepts of area	figures and understand concepts of area
	measurement.	measurement.
	a. A square with side length 1 unit, called "a	a. A square with side length 1 unit, called "a
	unit square," is said to have "one square	unit square," is said to have "one square
	unit" of area, and can be used to measure	unit" of area, and can be used to measure
	area.	area.
	b. A plane figure which can be covered	b. A plane figure which can be covered
	without gaps or overlaps by n unit	without gaps or overlaps by n unit squares is said to have an area of n square units.
	squares is said to have an area of n	1
	square units.	
Indicator	3.M.B.4 Measure areas by counting unit squares	3.MD.C.6 Measure areas by counting unit squares
	(square cm, square m, square in, square ft, and	(square cm, square m, square in, square ft, and
	non-standard units).	non-standard units).

Type	2023 NJSLS-M	2016 NJSLS-M
Indicator	3.M.B.5 Relate area to the operations of	3.MD.C.7 Relate area to the operations of
	multiplication and addition.	multiplication and addition.
	a. Find the area of a rectangle with	a. Find the area of a rectangle with
	whole-number side lengths by tiling it and	whole-number side lengths by tiling it and
	show that the area is the same as would	show that the area is the same as would be
	be found by multiplying the side lengths.	found by multiplying the side lengths.
	b. Multiply side lengths to find areas of	b. Multiply side lengths to find areas of
	rectangles with whole number side	rectangles with whole number side lengths
	lengths in the context of solving real	in the context of solving real world and
	world and mathematical problems, and	mathematical problems, and represent
	represent whole-number products as	whole-number products as rectangular
	rectangular areas in mathematical	areas in mathematical reasoning.
	reasoning.	e. Use tiling to show in a concrete case that
	c. Use tiling to show in a concrete case that	the area of a rectangle with whole-number
	the area of a rectangle with	side lengths a and $b+c$ is the sum of
	whole-number side lengths a and $b+c$	a imes b and $a imes c$. Use area models to
	is the sum of $a \times b$ and $a \times c$. Use area	represent the distributive property in
	models to represent the distributive	mathematical reasoning.
	property in mathematical reasoning.	c. Recognize area as additive. Find areas of
	d. Recognize area as additive. Find areas of	rectilinear figures by decomposing them
	rectilinear figures by decomposing them	into non-overlapping rectangles and
	into non-overlapping rectangles and	adding the areas of the non-overlapping
	adding the areas of the non-overlapping	parts, applying this technique to solve real
	parts, applying this technique to solve real	world problems.
	world problems.	

Туре	2023 NJSLS-M	2016 NJSLS-M
Indicator	3.M.C.6 Solve real world and mathematical	3.MD.D.8 Solve real world and mathematical
	problems involving perimeters of polygons,	problems involving perimeters of polygons,
	including finding the perimeter given the side	including finding the perimeter given the side
	lengths, finding an unknown side length, and	lengths, finding an unknown side length, and
	exhibiting rectangles with the same perimeter	exhibiting rectangles with the same perimeter
	and different areas or with the same area and	and different areas or with the same area and
	different perimeters.	different perimeters.
New	3.DL.A.1 Develop data-based questions and	n/a
	decide what data will answer the question.	
	(e.g., "What size shoe does a 3rd grader wear?",	
	"How many books does a 3rd grader read?")	
New	3.DL.A.2 Collect student-centered data (e.g.	n/a
	collect data on students' favorite ice cream	
	flavor) or use existing data to answer	
	data-based questions.	
Indicator	3.DL.B.3 Draw a scaled picture graph and a	3.MD.B.3 Draw a scaled picture graph and a
	scaled bar graph to represent a data set with	scaled bar graph to represent a data set with
	several categories. Solve one- and two-step	several categories. Solve one- and two-step
	"how many more" and "how many less"	"how many more" and "how many less"
	problems using information presented in	problems using information presented in scaled
	scaled bar graphs. For example, draw a bar	bar graphs. For example, draw a bar graph in
	graph in which each square in the bar graph	which each square in the bar graph might
	might represent 5 pets.	represent 5 pets.
Indicator	3.DL.B.4 Generate measurement data by	3.MD.B.4 Generate measurement data by
	measuring lengths using rulers marked with	measuring lengths using rulers marked with
	halves and fourths of an inch. Show the data by	halves and fourths of an inch. Show the data by
	making a line plot, where the horizontal scale	making a line plot, where the horizontal scale is
	is marked off in appropriate units—whole	marked off in appropriate units—whole
	numbers, halves, or quarters.	numbers, halves, or quarters.

Please note the following clarification to the Number and Operations – Fractions domain included as a footnote in the New Jersey Student Learning Standards technical document. Visual fraction models include tape diagrams, number lines, and area models (See Glossary). Set models, including those defined as the whole, are excluded at this grade. Grade 4 expectations in this domain are limited to fractions with denominators 2, 3, 4, 5, 6, 8, 10, 12 and 100.

Please note the following clarification to the Data Literacy domain for the 'Organize data and understand data visualizations' cluster. Analysis of data and visualizations at this grade excludes ratio, rate, proportion and percentages. These concepts are introduced in Grade 6.

Type	2023 NJSLS-M	2016 NJSLS-M
Text	4.NBT.B.4 With accuracy and efficiency, add and	4.NBT.B.4 Fluently add and subtract multi-digit
	subtract multi-digit whole numbers using the	whole numbers using the standard algorithm.
	standard algorithm.	
Indicator	4.M.A.1 Know relative sizes of measurement	4.MD.A.1 Know relative sizes of measurement
	units within one system of units including km,	units within one system of units including km,
	m, cm. mm; kg, g; lb, oz.; l, ml; hr, min, sec.	m, cm. mm; kg, g; lb, oz.; l, ml; hr, min, sec.
	Within a single system of measurement, express	Within a single system of measurement,
	measurements in a larger unit in terms of a	express measurements in a larger unit in terms
	smaller unit. Record measurement equivalents	of a smaller unit. Record measurement
	in a two-column table. For example, know that 1	equivalents in a two-column table. For example,
	ft is 12 times as long as 1 in. Express the length	know that 1 ft is 12 times as long as 1 in.
	of a 4 ft snake as 48 in. Generate a conversion	Express the length of a 4 ft snake as 48 in.
	table for feet and inches listing the number	Generate a conversion table for feet and inches
	pairs (1, 12), (2, 24), (3, 36),	listing the number pairs (1, 12), (2, 24), (3, 36),

Туре	2023 NJSLS-M	2016 NJSLS-M
Indicator	4.M.A.2 Use the four operations to solve word	4.MD.A.2 Use the four operations to solve word
	problems involving distances, intervals of time,	problems involving distances, intervals of time,
	liquid volumes, masses of objects, and money,	liquid volumes, masses of objects, and money,
	including problems involving simple fractions	including problems involving simple fractions
	or decimals, and problems that require	or decimals, and problems that require
	expressing measurements given in a larger unit	expressing measurements given in a larger unit
	in terms of a smaller unit. Represent	in terms of a smaller unit. Represent
	measurement quantities using diagrams such as	measurement quantities using diagrams such
	number line diagrams that feature a	as number line diagrams that feature a
	measurement scale.	measurement scale.
Indicator	4.M.A.3 Apply the area and perimeter formulas	4.MD.A.3 Apply the area and perimeter
	for rectangles in real world and mathematical	formulas for rectangles in real world and
	problems. For example, find the width of a	mathematical problems. For example, find the
	rectangular room given the area of the flooring	width of a rectangular room given the area of
	and the length, by viewing the area formula as a	the flooring and the length, by viewing the area
	multiplication equation with an unknown	formula as a multiplication equation with an
	factor.	unknown factor.

Type	2023 NJSLS-M	2016 NJSLS-M
Indicator	4.M.B.4 Recognize angles as geometric shapes	4.MD.C.5 Recognize angles as geometric shapes
	that are formed wherever two rays share a	that are formed wherever two rays share a
	common endpoint, and understand concepts of	common endpoint, and understand concepts of
	angle measurement:	angle measurement:
	a. An angle is measured with reference to a	a. An angle is measured with reference to a
	circle with its center at the common	circle with its center at the common
	endpoint of the rays, by considering the	endpoint of the rays, by considering the
	fraction of the circular arc between the	fraction of the circular arc between the
	points where the two rays intersect the	points where the two rays intersect the
	circle. An angle that turns through $\frac{1}{360}$ th	circle. An angle that turns through $\frac{1}{360}$ th of
	of a circle is called a "one-degree angle,"	a circle is called a "one-degree angle," and
	and can be used to measure angles.	can be used to measure angles.
	b. An angle that turns through n one-degree	b. An angle that turns through n one-degree
	angles is said to have an angle measure of	angles is said to have an angle measure of
	ⁿ degrees.	ⁿ degrees.
Indicator	4.M.B.5 Measure angles in whole-number	4.MD.C.6 Measure angles in whole-number
	degrees using a protractor. Sketch angles of	degrees using a protractor. Sketch angles of
	specified measure.	specified measure.
Indicator	4.M.B.6 Recognize angle measure as additive.	4.MD.C.7 Recognize angle measure as additive.
	When an angle is decomposed into	When an angle is decomposed into
	non-overlapping parts, the angle measure of the	non-overlapping parts, the angle measure of
	whole is the sum of the angle measures of the	the whole is the sum of the angle measures of
	parts. Solve addition and subtraction problems	the parts. Solve addition and subtraction
	to find unknown angles on a diagram in real	problems to find unknown angles on a diagram
	world and mathematical problems, e.g., by using	in real world and mathematical problems, e.g.,
	an equation with a symbol for the unknown	by using an equation with a symbol for the
	angle measure.	unknown angle measure.

Туре	2023 NJSLS-M	2016 NJSLS-M
New	4.DL.A.1 Create data-based questions, generate	n/a
	ideas based on the questions, and then refine	
	the questions.	
New	4.DL.A.2 Develop strategies to collect various	n/a
	types of data and organize data digitally.	
New	4.DL.A.3 Understand that subsets of data can be	n/a
	selected and analyzed for a particular purpose.	
New	4.DL.A.4 Analyze visualizations of a single data	n/a
	set, share explanations, and draw conclusions	
	that the data supports.	
Indicator	4.DL.B.5 Make a line plot to display a data set of	4.MD.B.4 Make a line plot to display a data set
	measurements in fractions of a unit ($\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$).	of measurements in fractions of a unit ($\frac{1}{2}$, $\frac{1}{4}$,
	Solve problems involving addition and	1/8). Solve problems involving addition and
	subtraction of fractions by using information	subtraction of fractions by using information
	presented in line plots. For example, from a line	presented in line plots. For example, from a line
	plot find and interpret the difference in length	plot find and interpret the difference in length
	between the longest and shortest specimens in	between the longest and shortest specimens in
	an insect collection.	an insect collection.

Please note the following clarification to the Number and Operations — Fractions domain included as a footnote in the New Jersey Student Learning Standards technical document. Visual fraction models include tape diagrams, number lines, and area models (See Glossary). Set models, including those defined as the whole, are excluded at this grade.

Please note the following clarification to the Data Literacy domain for the 'Understand and analyze data visualizations' cluster. Analysis of data and visualizations at this grade excludes ratio, rate, proportion and percentages. These concepts are introduced in Grade 6.

Type	2023 NJSLS-M	2016 NJSLS-M
Text	5.NBT.B.5 With accuracy and efficiency,	5.NBT.B.5 Fluently multiply multi-digit whole
	multiply multi-digit whole numbers using the	numbers using the standard algorithm.
	standard algorithm.	
Text	5.NF.B.3 Interpret a fraction as division of the	5.NF.B.3 Interpret a fraction as division of the
	numerator by the denominator (i.e., $\frac{a}{b} = a \div b$	numerator by the denominator $\frac{a}{b} = a \div b$. Solve
). Solve word problems involving division of	word problems involving division of whole
	whole numbers leading to answers in the	numbers leading to answers in the form of
	form of fractions or mixed numbers, e.g., by	fractions or mixed numbers, e.g., by using visual
	using visual fraction models or equations to	fraction models or equations to represent the
	represent the problem. For example, interpret	<u>3</u>
	$\frac{3}{4}$ as the result of dividing 3 by 4, noting that	problem. For example, interpret $\frac{3}{4}$ as the result
	$\frac{1}{4}$ as the result of dividing 3 by 4, noting that	3
	$\frac{3}{4}$ multiplied by 4 equals 3, and that when 3	of dividing 3 by 4, noting that $\frac{4}{4}$ multiplied by 4
	$\frac{1}{4}$ multiplied by 4 equals 3, and that when 3	equals 3, and that when 3 wholes are shared
	wholes are shared equally among 4 people	equally among 4 people each person has a share
	each person has a share of size $\frac{3}{4}$. If 9	of size $\frac{3}{4}$. If 9 people want to share a 50-pound
	people want to share a 50-pound sack of rice	sack of rice equally by weight, how many
	equally by weight, how many pounds of rice	pounds of rice should each person get? Between
	should each person get? Between what two	what two whole numbers does your answer lie?
	whole numbers does your answer lie?	

Type	2023 NJSLS-M	2016 NJSLS-M
Indicator	5.M.A.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.	5.MD.A.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.
Indicator	 5.M.B.2 Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units. 	 5.MD.C.3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using <i>n</i> unit cubes is said to have a volume of <i>n</i> cubic units.
Indicator	5.M.B.3 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and non-standard units.	5.MD.C.4 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and non-standard units.
Indicator	5.M.B.4 Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.	5.MD.C.5 Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
New	5.DL.A.1 Understand how different visualizations can highlight different aspects of data. Ask questions and interpret data visualizations to describe and analyze patterns.	n/a

Туре	2023 NJSLS-M	2016 NJSLS-M
New	5.DL.A.2 Develop strategies to collect, organize and represent data of various types and from various sources. Communicate results digitally through a data visual (e.g.	n/a
	chart, storyboard, video presentation).	
New	5.DL.A.3 Collect and clean data to be analyzable (e.g., make sure each entry is formatted correctly, deal with missing or incomplete data).	n/a
New	5.DL.A.4 Using appropriate visualizations (i.e. double line plot, double bar graph), analyze data across samples.	n/a
Indicator	5.DL.B.5 Make a line plot to display a data set of measurements in fractions of a unit (½, ¼, ½). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.	5.MD.B.2 Make a line plot to display a data set of measurements in fractions of a unit (½, ¼, ⅙). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.

Type	2023 NJSLS-M	2016 NJSLS-M
Text	6.NS.B.2 With accuracy and efficiency, divide multi-digit numbers using the standard algorithm.	6.NS.B.2 Fluently divide multi-digit numbers using the standard algorithm.
Text	6.NS.B.3 With accuracy and efficiency, add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	6.NS.B.3 Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.
Text	6.G.A.4 Represent three-dimensional figures (e.g., pyramid, triangular prism, rectangular prism) using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.	6.G.A.4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

Grade 7

Туре	2023 NJSLS-M	2016 NJSLS-M
Text	7.EE.B.4a Solve word problems leading to	7.EE.B.4a Solve word problems leading to
	equations of the form $px + q = r$ and	equations of the form $px + q = r$ and
	p(x+q)=r, where p , q , and r are	p(x+q)=r , where P , q , and r are
	specific rational numbers. Solve equations of	specific rational numbers. Solve equations of
	these forms with accuracy and efficiency.	these forms fluently. Compare an algebraic
	Compare an algebraic solution to an arithmetic	solution to an arithmetic solution, identifying
	solution, identifying the sequence of the	the sequence of the operations used in each
	operations used in each approach. For	approach. For example, the perimeter of a
	example, the perimeter of a rectangle is 54 cm.	rectangle is 54 cm. Its length is 6 cm. What is
	Its length is 6 cm. What is its width?	its width?

Grade 8

Type	2023 NJSLS-M	2016 NJSLS-M
New ¹	8.NS.A.3 Understand that the sum or product	N.RN.B.3 Understand that the sum or product
	of two rational numbers is rational; that the	of two rational numbers is rational; that the
	sum of a rational number and an irrational	sum of a rational number and an irrational
	number is irrational; and that the product of a	number is irrational; and that the product of a
	nonzero rational number and an irrational	nonzero rational number and an irrational
	number is irrational.	number is irrational.
Indicator	8.EE.A.2 Use square root and cube root	8.EE.A.2 Use square root and cube root
	symbols to represent solutions to equations of	symbols to represent solutions to equations of
	the form $x^2 = p$ and $x^2 = p$, where p is a	the form $x^2 = p$ and $x^2 = p$, where p is a
	positive rational number.	positive rational number. Evaluate square
	8.EE.A.2a Evaluate square roots of small	roots of small perfect squares and cube roots
	perfect squares and cube roots of small perfect	of small perfect cubes. Know that $\sqrt{2}$ is
	cubes. Know that $\sqrt{2}$ is irrational.	irrational.
New	8.EE.A.2b Simplify numerical radicals, limiting	n/a
	to square roots (i.e. nonperfect squares). For	
	example, simplify $\sqrt{8}$ to $2\sqrt{2}$.	
Text	8.EE.C.8b Solve systems of two linear	8.EE.C.8b Solve systems of two linear
	equations in two variables using the	equations in two variables algebraically, and
	substitution method and estimate solutions by	estimate solutions by graphing the equations.
	graphing the equations. Solve simple cases by	Solve simple cases by inspection. For example:
	inspection. For example: by inspection,	3x+2y=5 and $3x+2y=6$ have no solution
	conclude that $3x + 2y = 5$ and $3x + 2y = 6$	
		because $3x+2y$ cannot simultaneously be 5
	have no solution because $3x+2y$ cannot	and 6.
	simultaneously be 5 and 6. Solve $3x + y = 30$	
	and $y = 2x$ using the substitution method;	

 $^{^{1}}$ The expectation of 8.NS.A.3 is new to grade 8. Formerly N.RN.B.3, it has been moved from the High School Number and Quantity conceptual category.

Туре	2023 NJSLS-M	2016 NJSLS-M
	Solve $y = 3x + 1$ and $y = -2x + 7$ using the	
	substitution method.	

High School - Number and Quantity

Туре	2023 NJSLS-M	2016 NJSLS-M
New	N.RN.A.3 Simplify radicals, including algebraic	n/a
	radicals (e.g. $\sqrt[3]{54} = 3\sqrt[3]{2}$, simplify $\sqrt{32x^2}$).	
Deleted ²	n/a	N.RN.B.3 Explain why the sum or product of
		two rational numbers is rational; that the sum
		of a rational number and an irrational number
		is irrational; and that the product of a nonzero
		rational number and an irrational number is
		irrational.

 2 The expectation of N.RN.B.3 has been moved to grade 8 and appears at 8.NS.A.3.

High School—Algebra

Туре	2023 NJSLS-M	2016 NJSLS-M
Designation ('Plus' standard)	A.APR.C.4 (+) Prove polynomial identities	A.APR.C.4 Prove polynomial identities and use
	and use them to describe numerical	them to describe numerical relationships. For
Starraaray	relationships. For example, the difference of	example, the difference of two squares; the
	two squares; the sum and difference of two	sum and difference of two cubes; the
	cubes; the polynomial identity	polynomial identity
	$(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be used to	$(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be used to
	generate Pythagorean triples.	generate Pythagorean triples.
Designation	A.REI.C.5 (+) Prove that, given a system of	A.REI.C.5 Prove that, given a system of two
('Plus' standard)	two equations in two variables, replacing one	equations in two variables, replacing one
standardy	equation by the sum of that equation and a	equation by the sum of that equation and a
	multiple of the other produces a system with	multiple of the other produces a system with
	the same solutions.	the same solutions.
Text	A.REI.C.6 Solve systems of linear equations	A.REI.C.6 Solve systems of linear equations
	algebraically (include using the elimination	exactly and approximately (e.g., with graphs),
	method) and graphically, focusing on pairs of	focusing on pairs of linear equations in two
	linear equations in two variables.	variables.
Designation ('Plus' standard)	A.SSE.B.4 (+) Derive and/or explain the	A.SSE.B.4 Derive and/or explain the formula
	formula for the sum of a finite geometric series	for the sum of a finite geometric series (when
	(when the common ratio is not 1), and use the	the common ratio is not 1), and use the
	formula to solve problems. For example,	formula to solve problems. For example,
	calculate mortgage payments. *	calculate mortgage payments. ★

High School—Functions

Type	2023 NJSLS-M	2016 NJSLS-M
Text ³	F.IF.C.7e Graph exponential and logarithmic	F.IF.C.7e Graph exponential and logarithmic
	functions, showing intercepts and end	functions, showing intercepts and end
	behavior.	behavior, and trigonometric functions,
		showing period, midline, and amplitude.
Indicator and	F.IF.C.7f (+) Graph trigonometric functions,	F.IF.C.7e Graph exponential and logarithmic
Designation ('Plus'	showing period, midline, and amplitude.	functions, showing intercepts and end
standard)		behavior, and trigonometric functions,
		showing period, midline, and amplitude.
Designation	F.TF.A.1 (+) Understand radian measure of	F.TF.A.1 Understand radian measure of an
('Plus' standard)	an angle as the length of the arc on the unit	angle as the length of the arc on the unit circle
Sumum uj	circle subtended by the angle.	subtended by the angle.
Designation	F.TF.A.2 (+)Explain how the unit circle in the	F.TF.A.2 Explain how the unit circle in the
('Plus' standard)	coordinate plane enables the extension of	coordinate plane enables the extension of
	trigonometric functions to all real numbers,	trigonometric functions to all real numbers,
	interpreted as radian measures of angles	interpreted as radian measures of angles
	traversed counterclockwise around the unit	traversed counterclockwise around the unit
	circle.	circle.
Designation	F.TF.B.5 (+) Choose trigonometric functions	F.TF.B.5 Choose trigonometric functions to
('Plus' standard)	to model periodic phenomena with specified	model periodic phenomena with specified
staridaraj	amplitude, frequency, and midline. *	amplitude, frequency, and midline. *
Designation ('Plus' standard)	F.TF.C.8 (+) Prove the Pythagorean identity	F.TF.C.8 Prove the Pythagorean identity
	$\sin^2(\theta) + \cos^2 \theta = 1$ and use it to find	$\sin^2(\theta) + \cos^2 \theta = 1$ and use it to find $\sin(\theta)$,
	$\sin(\theta)$, $\cos(\theta)$ or $\tan(\theta)$ given $\sin(\theta)$,	$\cos(\theta)$ or $\tan(\theta)$ given $\sin(\theta)$, $\cos(\theta)$ or
	$\cos(heta)$ or $\tan(heta)$ and the quadrant of the	an(heta) and the quadrant of the angle.
	angle.	

 $^{^3}$ The expectations related to trigonometric functions were removed from F.IF.C.7e and included in a new plus standard, 7.IF.C.7f.

High School—Geometry

Туре	2023 NJSLS-M	2016 NJSLS-M
Designation ('Plus' standard)	G.GPE.A.1 (+) Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	G.GPE.A.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
Designation ('Plus' standard)	G.GPE.A.2 (+) Derive the equation of a parabola given a focus and directrix.	G.GPE.A.2 Derive the equation of a parabola given a focus and directrix.
Designation ('Plus' standard)	G.GPE.B.6 (+) Find the point on a directed line segment between two given points that partitions the segment in a given ratio.	G.GPE.B.6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.

High School—Statistics and Probability

Type	2023 NJSLS-M	2016 NJSLS-M
Designation	S.IC.A.1 (+) Understand statistics as a process	S.IC.A.1 Understand statistics as a process for
('Plus' standard)	for making inferences about population	making inferences about population
Starraur uj	parameters based on a random sample from	parameters based on a random sample from
	that population.	that population.
Designation	S.IC.A.2 (+) Decide if a specified model is	S.IC.A.2 Decide if a specified model is
('Plus' standard)	consistent with results from a given	consistent with results from a given
	data-generating process, e.g., using simulation.	data-generating process, e.g., using simulation.
	For example, a model says a spinning coin falls	For example, a model says a spinning coin falls
	heads up with probability 0.5. Would a result	heads up with probability 0.5. Would a result
	of 5 tails in a row cause you to question the	of 5 tails in a row cause you to question the
	model?	model?
Designation	S.IC.B.3 (+) Recognize the purposes of and	S.IC.B.3 Recognize the purposes of and
('Plus' standard)	differences among sample surveys,	differences among sample surveys,
Standard	experiments, and observational studies;	experiments, and observational studies;
	explain how randomization relates to each.	explain how randomization relates to each.
Designation	S.IC.B.4 (+) Use data from a sample survey to	S.IC.B.4 Use data from a sample survey to
('Plus' standard)	estimate a population mean or proportion;	estimate a population mean or proportion;
standard	develop a margin of error through the use of	develop a margin of error through the use of
	simulation models for random sampling.	simulation models for random sampling.
Designation	S.IC.B.5 (+) Use data from a randomized	S.IC.B.5 Use data from a randomized
('Plus'	experiment to compare two treatments; use	experiment to compare two treatments; use
standard)	simulations to decide if differences between	simulations to decide if differences between
	parameters are significant.	parameters are significant.

Type	2023 NJSLS-M	2016 NJSLS-M
Text and Designation ('Plus' standard)	S.IC.B.6 (+) Evaluate reports based on data (e.g. interrogate study design, data sources, randomization, the way the data are analyzed and displayed, inferences drawn and methods used; identify and explain misleading uses of data; recognize when arguments based on data are flawed).	S.IC.B.6 Evaluate reports based on data.
Designation ('Plus' standard)	S.CP.A.1 (+) Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	S.CP.A.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").
Designation ('Plus' standard)	S.C.P.A.2 (+) Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	S.C.P.A.2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
Designation ('Plus' standard)	S.C.P.A.3 (+) Understand the conditional $\frac{P(A \ and \ B)}{P(B)}$ probability of A given B as $\frac{P(B)}{P(B)}$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A , and the conditional probability of B given A is the same as the probability of B .	S.C.P.A.3 Understand the conditional $\frac{P(A \ and \ B)}{P(B)},$ probability of A given B as $\frac{P(A \ and \ B)}{P(B)},$ and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A , and the conditional probability of B given A is the same as the probability of B .

Type	2023 NJSLS-M	2016 NJSLS-M
Designation	S.CP.A.4 (+) Construct and interpret two-way	S.CP.A.4 Construct and interpret two-way
('Plus' standard)	frequency tables of data when two categories	frequency tables of data when two categories
Standard	are associated with each object being	are associated with each object being
	classified. Use the two-way table as a sample	classified. Use the two-way table as a sample
	space to decide if events are independent and	space to decide if events are independent and
	to approximate conditional probabilities. For	to approximate conditional probabilities. For
	example, collect data from a random sample of	example, collect data from a random sample of
	students in your school on their favorite	students in your school on their favorite
	subject among math, science, and English.	subject among math, science, and English.
	Estimate the probability that a randomly	Estimate the probability that a randomly
	selected student from your school will favor	selected student from your school will favor
	science given that the student is in tenth grade.	science given that the student is in tenth grade.
	Do the same for other subjects and compare	Do the same for other subjects and compare
	the results.	the results.
Designation	S.CP.A.5 (+) Recognize and explain the	S.CP.A.5 Recognize and explain the concepts of
('Plus' standard)	concepts of conditional probability and	conditional probability and independence in
	independence in everyday language and	everyday language and everyday situations.
	everyday situations. For example, compare the	For example, compare the chance of having
	chance of having lung cancer if you are a	lung cancer if you are a smoker with the
	smoker with the chance of being a smoker if	chance of being a smoker if you have lung
	you have lung cancer.	cancer.
Designation	S.CP.B.6 (+) Find the conditional probability	S.CP.B.6 Find the conditional probability of A
('Plus' standard)	of A given B as the fraction of B's outcomes	given B as the fraction of B's outcomes that
Standard	that also belong to A, and interpret the answer	also belong to A, and interpret the answer in
	in terms of the model.	terms of the model.
Designation	S.CP.B.7 (+) Apply the Addition Rule,	S.CP.B.7 Apply the Addition Rule,
('Plus' standard)	P(A or B) = P(A) + P(B) - P(A and B),	P(A or B) = P(A) + P(B) - P(A and B),
	and interpret the answer in terms of the	and interpret the answer in terms of the
	model.	model.