Team Force Torque Power Energy Assignment

Team Number: Team Members:

At the beginning of a machine design project it is important to quantify your energy sources. Each quarter the kit varies and each each team must measure Force, Torque, Power, and Energy in your kit.

Potential Energy from Gravity:

Determine the maximum amount of energy available due to gravitational potential. Assume that half the total mass of the kit is free falling from the maximum contest start height.

Mass - ½ of kit (kg):	m_{max}	
Height Change (m):	h_{max}	
Release Time free-fall (s):	$t = \sqrt{2h/g}$	
Potential Energy (J):	E = mgh	
Power (watts):	$P = \frac{E}{t}$	

Springs and Rubber Bands:

Experimentally determine the spring constant 'k', then calculate the energy, and power available from the springs/rubber bands. Make sure masses are large enough to overcome the initial spring pretension.

Spring 2020 tutorial

		Small RB	Med RB	Large RB	Small SP	Med SP	Large SP
Load 1 (N):	F_{1}						
Length (m):	L_{1}						
Load 2 (N):	F_{2}						
Length (m):	L_2						
K (N/m):	$k = \frac{F_2 - F_1}{L_2 - L_1}$						
Initial Length (m):	L_{o}						
Max Length* (m):	L_{m}						
Max Elongation (m):	$\delta_{x} = L_{m} - L_{o}$						
Max Force (Nm):	$F = k \cdot \delta_{x}$						
Max Energy (J):	$E = \frac{1}{2}k \cdot \delta_x^2$						

T _{release} ** (s):	t release			
Max Power (watt):	$P = \frac{E}{t}$			

^{*} Max Length: Do not damage springs by stretching them beyond their elastic limit

Spring and Rubber Band Stiffness (oscillation):

Calculate the stiffness for the small rubber band and medium spring using oscillation. Attach a medium sized mass to the end of the spring, measure the period of oscillation, then calculate the spring stiffness. Compare the results from the ones obtained above.

		Small RB	Med SP
Stiffness from elongation (found in prev. table)	$k_{elon}^{} = See above$		
Mass (kg):	m		
Period (sec):	t		
Frequency (rad/s):	$\omega = 2\pi/t$		
Stiffness from oscillation:	$k_{osc} = m \cdot \omega^2$		
% difference:	$\% = \frac{ k_{elong} - k_{osc} }{k_{osc}}$		

DC Motors:

Using the setup in the lab, measure and calculate the torque, speed, and power of the geared and non geared motors. Using your results, plot the torque-speed motor curves.

https://www.just4funelectronics.com/product-page/all-metal-gear-motor https://drive.google.com/drive/u/0/folders/1SP6JQKal_lxnw6ODqkiG3rZnPPTTvG09

		Geared Motor	Non-Geared Motor
Stall Angle (deg):	θ		

^{**} **Release Time:** a good estimate for the release time is ½ period of oscillation. See section below.

Moment Arm Length (m):	L	
Mass (kg):	m	
Stall Torque (Nm):	$ au_{stall} = mgLsin\theta$	
No Load Speed (rad/s):	ω_{noLoad}	
Max Power (watts):	$P = \frac{1}{2} \tau_{stall} * \frac{1}{2} \omega_{noLoad}$	
Max Energy in 60s (J):	$E = P \cdot t$	

 Torque [N-m]
 Torque [N-m]
 Torque [N-m]
 Speed [rad/s]
 Speed [rad/s]

Summary of Energy Sources:

	Max Force/Torque:	Max Energy:	Max Power:
Geared Motor			
Non-Geared Motor			
Small Rubber Band			
Med Rubber Band			
Large Rubber Band			
Small Spring			
Medium Spring			
Large Spring			

Weight (Pot.	Energy)			
		Component:		Value:
Max Force:				
Max Torque:				
Max Power:				
Max Energy:				