Термодинамические свойства сульфида палладия Pd₁₆S₇

Д. А. Чареев^{1,2}, Н. А. Полотнянко^{1,*}, А. В. Тюрин³

¹Федеральное государственное бюджетное образовательное учреждение высшего образования «Университет «Дубна», Дубна, Россия

²Федеральное государственное бюджетное учреждение науки Институт экспериментальной минералогии им. Д.С. Коржинского Российской академии наук, Черноголовка, Россия ³Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Москва, Россия

*e-mail: polot.nat@gmail.com

Работа посвящена изучению термодинамических свойств фазы $Pd_{16}S_7$, являющейся синтетическим аналогом минерала. По результатам измерений изобарной теплоемкости в интервале 10-340 К методом адиабатической калориметрии получены стандартные термодинамические функции. Определены энтропия, изменение энтальпии и приведенная энергия Гиббса. При 298.15 К рассчитаны $C_p = 534.3 \pm 2.7$ Дж/(К моль), $S^\circ = 770.1 \pm 3.9$ Дж/(К моль), $H^\circ(298.15 \text{ K}) - H^\circ(0) = 111.3 \pm 0.6$ кДж/моль, $\Phi^\circ = 396.8 \pm 2.0$ Дж/(К моль). Оценена энергия Гиббса образования $\Delta_G^\circ(Pd_{16}S_7, \kappa, 298.15 \text{ K})$.

Ключевые слова: теплоемкость, фаза $Pd_{16}S_7$, халькогениды платиноидов, адиабатическая калориметрия, энтропия, термодинамические функции.

Введение

Данная работа является частью комплексного исследования халькогенидов переходных металлов [1, 2], в том числе сульфидов палладия, встречающихся в природе в виде минералов, и имеющих перспективы для применения.

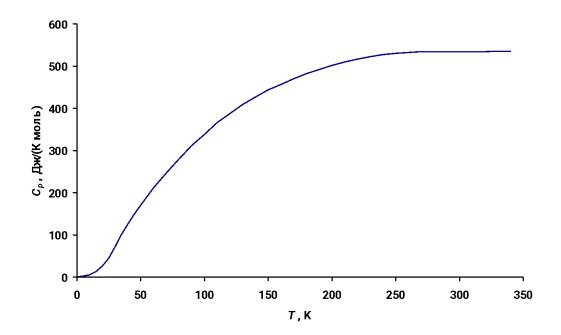


Рисунок 1. Температурная зависимость изобарной теплоемкости для $Pd_{16}S_7(\kappa)$

Таблица 1. Экспериментальные значения изобарной теплоемкости $Pd_{16}S_{7}(\kappa)$

T, K	C_p $^{\circ}(T)$, Дж/(К моль)	<i>T</i> , K	$C_p^{\circ}(T),$ Дж/(К моль)	<i>T</i> , K	C_p $^{\circ}(T),$ Дж/(К моль)
10.05	4.47	65.32	233.90	175.95	477.30
10.73	5.37	66.97	239.10	179.26	479.00
11.42	6.89	68.62	243.60	182.57	483.60
12.12	8.60	70.28	248.90	185.88	486.80
12.83	10.56	72.16	253.00	189.19	489.90

Исследование выполнено в рамках госзадания...

Список литературы

- 1. Тюрин А.В., Чареев Д.А., Полотнянко Н.А. Термодинамические свойства AuSb₂. Неорганические материалы. 2020;56(12):1298–1302.
- 2. Pankratz L.B. Thermodynamic Properties of Elements and Oxides. U.S. Bur. Mines Bull. 1982;672:509.

Thermodynamic properties of palladium sulfide Pd₁₆S₇

D. A. Chareev^{1,2}, N. A. Polotnyanko^{1,*}, A. V. Tyurin³

¹Dubna State University, Dubna, Russia
²Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka,
Russia
³Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow,
Russia

*e-mail: polot.nat@gmail.com

The work is devoted to the study of the thermodynamic properties of the $Pd_{16}S_7$ phase, which is a synthetic analogue of the mineral. Based on the results of measurements of isobaric heat capacity in the range 10-340 K using adiabatic calorimetry. Standard thermodynamic functions were obtained: entropy, enthalpy change and reduced Gibbs energy. At 298.15 K calculated $C_p = 534.3 \pm 2.7$ J/(mol·K), $S^{\circ} = 770.1 \pm 3.9$ J/(mol·K), $H^{\circ}(298.15 \text{ K}) - H^{\circ}(0) = 111.3 \pm 0.6$ kJ/mol, $\Phi^{\circ} = 396.8 \pm 2.0$ J/(mol·K). Gibbs energy of formation estimated $\Delta_t G^{\circ}(Pd_{16}S_7, \kappa, 298.15 \text{ K})$.

Key words: heat capacity, Pd₁₆S₇ phase, platinum group chalcogenides, adiabatic calorimetry, entropy, thermodynamic functions.