PRACTICE 4.4 – Parallel and Perpendicular Lines

* Full, worked solutions can be found in the folder linked on the Course Website ©

Exercise 4G

1 Find the gradient of a line which is parallel to each line with the given equation:

a
$$y = -x + 6$$

b
$$x = 7$$

c
$$x - 3y = 5$$

d
$$y = -\frac{2}{5}(x-1)$$

2 Find the gradient of a line which is perpendicular to each of the following lines:

a
$$y = -3x + 11$$

b
$$-\frac{x}{4} + 2y = 0$$

c
$$y = -3$$

d
$$y = \frac{2(x-1)}{3}$$

- 3 L₁ and L₂ are the trajectories of two ships moving in straight lines. Determine whether the ships' trajectories are perpendicular, parallel or neither:
 - a Line L_1 passes through the points (0, -4) and (-1, -7); and line L_2 passes through the points (3, 0) and (-3, 2).
- **b** Line L_1 has equation $2y \frac{1}{2}x + 3 = 0$, and line L_2 has equation y 3 = 0.25(x 1).
- Line L_1 has equation $y = -\frac{2}{5}x 1$, and line L_2 has equation $x \frac{y}{3} = 4$.

- **4** Determine whether the straight air routes with equations $x \frac{y}{2} = -3$ and x = -5 are intersecting or not. If they are intersecting, find the point of intersection.
- **5** A ski resort is building two parallel straight ski slopes for children. One of them has a gradient of $\frac{1}{3}$. The other ski slope will pass through points (2,-3) and (s,-5). Find the value of s.
- A straight connecting street segment is built perpendicular to an existing street with equation $y = \frac{2}{7}x + 3$. Determine the equation of the line of the new street segment, which passes through point B(-1,-0.2).
- **7** A fish farm builds a breeding basin in the form of a quadrilateral ABCD, with A(-3,-1), B(2,0), C(5,3) and D(0,2). Show that the quadrilateral ABCD is a parallelogram.

continued on next page □

* Full, worked solutions can be found in the folder linked on the Course Website ©

Exercise 4H

1 Two friends, Alison and Bernard, are walking along two different roads. The roads can be represented by the lines with equations y = -x + 410 and $y = \frac{1}{2}x - 100$.

Alison is on the first road at the point with coordinates (0,410) and Bernard is at the point with coordinates (50,-75).

- a Verify that Bernard is on the road with equation $y = \frac{1}{2}x 100$.
- **b** Find the coordinates of the point of intersection of the two roads.
- **2** Find the equation of the perpendicular bisector of each of the following line segments:
 - **a** the line segment joining A(2, 2) and B(4, 6)
 - **b** [CD], if the equation of the line passing through C and D is x + y = 3 and the midpoint of [CD] is (2, 1).

- **3** Find the shortest distance from a hotel located at (2, 4) to a straight road with equation 3x + 5y + 8 = 0.
- **4** Two towns are located at points A(2,-2) and B(8,5). A new school is to be built on a straight road with equation -x +7y = -4. Find the location of the school so that it is equidistant from the two towns.
- **5** A triangular park has vertices at A(-1,-1), B(4,4) and C(7,-1). A fountain is to be built that is equidistant from all vertices. Find the location D of the fountain.