An Introduction to Organic Chemistry

What is Organic Chemistry?

- Organic chemistry is the study of compounds that contain _____ atoms bonded to hydrogen, and often to oxygen, nitrogen, halogens, and other elements.
- Why Carbon?
 - o Carbon forms 4 strong ______bonds.
 - o Can form chains, rings, and complex structures.
 - Found in living organisms and many synthetic materials.

Importance of Organic Chemistry

- Basis of _____ molecules: carbohydrates, proteins, lipids, nucleic acids
- Used in medicine (pharmaceuticals), fuels (gasoline, propane), and materials (plastics, fabrics)
- Essential for understanding life processes and modern technology

Vitalism Theory (Pre-1800s)

- Scientists believed that organic compounds could only be made by living organisms.
- They thought living cells had a special "vital force" necessary to make these substances.
- This made people believe lab of organic compounds was impossible

Friedrich Wöhler's Discovery (1828)

- Friedrich Wöhler accidentally synthesized urea (an organic compound found in urine) by heating ammonium cyanate, an inorganic salt.
- This shocked the scientific community—it showed that _____ compounds could be made in the lab.
- This marked the beginning of modern organic chemistry.

Ammonium cyanate \rightarrow (heat) \rightarrow Urea NH₄OCN (NH₂)₂CO Inorganic Organic

Organic vs. Inorganic

Organic Compounds	Inorganic Compounds				
Contains carbon-hydrogen (C-H) bonds	Usually don't contain C-H bonds				
Often found in living organisms	Often from non-living sources				
Can be large and complex	Often smaller, simpler				
HO NH₂	нн				

Bonding in Organic Molecules

- Carbon can form:
 - Single bonds (alkanes)
 - Double bonds (alkenes)
 - Triple bonds (alkynes)
- Bonding types influence:
 - Shape of molecule
 - Reactivity
 - o Physical ______ (boiling point, solubility, etc.)

Hydrocarbons

- Hydrocarbons are molecules made of only _____ and hydrogen.
- All atoms are bonded to each other by covalent bonds
- Divided into 2 classes:

Aliphatics

- Alkanes single bonds only
- Alkenes at least one double bond
- Alkynes at least one triple bond

$$H - C = C - H$$

Aromatics

o Aromatic rings - often benzene

- Can be saturated or unsaturated:
 - o Saturated: contain only single C-C bonds
 - Unsaturated: contain at least one double or triple C-C bond therefore fewer hydrogen atoms are attached than if all C-C bonds were single.

Unsaturated
Alkenes Alkynes

Aliphatics

- Basis of _____ molecules: carbohydrates, proteins, lipids, nucleic acids
- Used in medicine (pharmaceuticals), fuels (gasoline, propane), and materials (plastics, fabrics)
- Essential for understanding life processes and modern technology

Туре	General Formula	"Suffix"	C-C bond		
Alkane	C _n H _{2n + 2}	ane	All single		
Alkene	C _n H _{2n}	ene	one double		
Alkyne	C _n H _{2n - 2}	yne	one triple		
*Cycloalkane	C _n H _{2n}	ane	All single		
*Cycloalkene	C _n H _{2n - 2}	ene	One double		

^{*} For cyclic aliphatics, the prefix "cyclo" is used

Different Forms

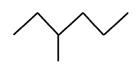
- Straight Chain: one continuous chain
 - ∘ eg. Butane, C₄H₁₀

- Branched Chain:
 - o contains at least one _____ (substituent) which takes the place of a Hydrogen atom
 - substituent can be an alkyl group (eg. methyl = CH₃)
 or a halogen atom
 - eg. Methylpropane, C₄H₁₀
- Cyclic hydrocarbon: has a closed ring

 eg. Cyclobutane, C₄H₂

Representing Organic Compounds

Example: 3-methylhexane

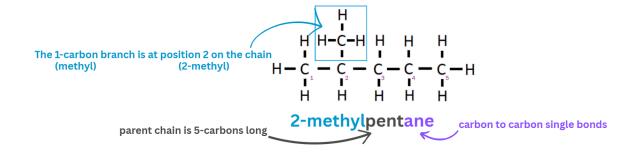

Complete Structural Diagram

Condensed Structural Diagram

$$\begin{array}{c} \operatorname{CH_3-CH_2-CH-CH_2-CH_2-CH_3} \\ \operatorname{CH_3} \end{array}$$

Skeleton Structural Diagram

Line Structural Diagram



Prefixes used in Naming Hydrocarbons

# C atoms	1	2	3	4	5	6	7	8	9	10
Prefix	meth	eth	prop	but	pent	hex	hept	oct	non	dec

Naming Organic Compounds (IUPAC Basics)

- Prefix = number of carbon atoms (meth-, eth-, prop-, but-, pent-, etc.)
- Suffix = type of bonds or functional group
 - o -ane (alkane)
 - o -ene (alkene)
 - -yne (alkyne)
- Number the carbon chain to give _____ possible numbers to double/triple bonds or branches

Functional Groups (Preview)

- Functional groups are specific atoms or groups that change the ______ of organic molecules.
- Examples:
 - Hydroxyl (-OH) → alcohols
 - Carboxyl (-COOH) → carboxylic acids
 - Amino $(-NH_2)$ → amines
 - o Halides (-Cl, -Br, -I)

Physical Properties of Organic Compounds

- 1. Boiling and Melting Points
 - As the number of carbon atoms ______, so do the boiling and melting points.
- 2. Intermolecular Forces
 - Dispersion Forces increase with molecular size and number of electrons, making larger molecules harder to separate.
- 3. Physical State by Carbon Count
 - Small hydrocarbons = gases (1–4 carbons)
 - Medium-sized = liquids (5–16 carbons)
 - Large molecules = solids (17+ carbons)

CH₄

C₈H₁₈

 $C_{20}H_{42}$

Real-Life Applications

- Pharmaceuticals: aspirin, _______
- Fuel sources: methane, gasoline
- Household: rubbing alcohol, vinegar
- Biochemistry: DNA, proteins

Safety with Organic Compounds

- Many are _____ handle with care
- Use in well-ventilated spaces
- Always wear gloves and goggles
- Dispose of according to lab protocol