If you are modding as a team, or any large software project, you should be
using a Git. While it can be daunting at first, it is well worth it in the long
run. This guide is designed to be short and to the point, as well as

minimising technical language so that anyone can read it and get started. |
hope you find it useful!

- Written by Zankoas, maintained by Alpinia

Index

Introduction

. Dictionary
. Why Use a Git?
Setup Guide

R

Git Basics

a. ‘GitExt Open repository’

b. ‘GitExt Commit...’

c. ‘Pull...

d. ‘Push...’

e. Help My Push Was Rejected From ‘Origin

. Creating a New Git
Manual Merges

= © 0 N O

11.
12.
13.

. Resetting
. Stashes

Branches

a. Creating a Branch

b. Moving Between Branches

c. Making Changes on a Branch

d. Pulling on a Branch
e. Merqging Branches

Tags
History and the File Tree

Appendix

a. Troubleshooting
b. Q&A

c. Changelog

d. Credits

1. Introduction

If you aren’t interested in the how, why or more advanced stuff and just want a
simple guide to the basics, skip to 4. Setup Guide and 5. Git Basics.

While | am not the first and will not be the last person to write a guide for using a Git,
none | have found are focused around modding. Modding presents unique challenges to
using a Git as people are less reliable and less experienced than in normal software
development. This does make using a Git harder, but | don’t for a moment think that
outweighs the benefits.

This won'’t be a flawless guide, nor explain the most efficient way to use a Git, but it
should help you reach the minimum level needed to start working and let you work from
there. Modding is very much a learning experience, with or without a Git.

What is a Git you ask? It is a bit of software used to manage multiple people working on
the same project. It does this by storing changes (called ‘commits’) as the difference
between the current and the previous version rather than as a whole new version
(technically it's more complicated than this, see the Q&A in the appendix if you want the
details).

This lets you see who has made a change, switch between versions and merge
different versions together without needing to store every single version in full.

If you'd like to give feedback or make suggestions you can message me on discord at:
zankoas, or message alpinia who helps maintain this resource. You can also email the
Kaiserreich team - who own this document - at kaiserreichofficial@gmail.com.

As you may or may not have worked out, | am primarily a modder for HOI4, but this
guide is equally applicable to other PDX games. In fact, apart from a few parts
regarding .mod files, this guide works great for any mod for any game.

2. Dictionary

e Git - Software used to manage multiple people working on the same project
e GitLab/GitHub - Both companies that host your Git remotely, so other people can
access it

mailto:kaiserreichofficial@gmail.com

GitExt - Short for Git Extensions, a client used manage your Git with an easy to
use interface

KDiff3 - A tool used to manage merges

Commit - Making changes to the Git, think of it like clicking ‘confirm’ when asked
if you are sure you want to make changes

Push - Taking changes you made locally and applying them to the online version
of your Git (the one hosted by GitLab for example)

Pull - Taking changes someone else made to the online version of the Git and
applying them to your local Git

3. Why use a Git?

Let's start with why you wouldn’t want to use a Git:

howbn -

Takes some effort to set up

Certain types of mistakes (see merges later on) can be harder to fix
Can be intimidating for a new user

Takes longer to download the first time

That’s really about it, as you can see 1-3 are just about being careful and having a
useful guide (hint hint), while 4 is just a minor inconvenience.

So, reasons to use a Git:

. Able to automatically merge changes from everyone working on a project

Able to almost instantly switch between any version of the project that has ever
existed

Can check who made any change, when they made it, what the change was and
what they said they did

Able to easily and quickly update after it is set up

Ensures that no one person is storing the mod on their personal computer
(accidents happen after all)

As I'm sure you can see with just a single person a Git is useful, but with four people,
seven people, twelve people or more, it becomes a must. Being able to merge changes
automatically, see who made what change and updating files easily becomes a lifesaver
in a team environment.

4. Setup Guide

This is my preferred setup for using a Git, it is by no means the only software that you
can use but the basic concepts in here will be the same whatever software you use.
Note this is a windows setup guide. For more details on other operating systems, the
Q&A in the appendix.

1. Download and install Git: https://git-scm.com/downloads

o

o O O O O

o

o

o

If you are unsure of the settings to choose when asked, | suggest the
following:
Select Components
Choosing the default editor used by Git
i. This requires Notepad++ be installed on your system, if it isn’t you
can download and install it from here:
ii. https://notepad-plus-plus.org/downloads/
iii. Equally, if you'd rather not use Notepad++, feel free to select a
different text editor
Adjusting the name of the initial branch in new repositories
i. Note that this will be changing in the future, so it may be worth
adjusting now rather than later
Adjusting your PATH environment
Choosing HTTPS transport backend

Configuring the line ending conversions
Configuring the terminal emulator to use with Git Bash

Choose the default behavior of "git pull’
i. See 5. Git Basics section ‘Pull...” for more information on what this
means
Choose a credential helper

Configuring extra options
Configuring experimental options

2. Download and install KDiff3: https://download.kde.org/stable/kdiff3/

o

Sort by ‘Last modified’ to find the latest version, will be a .exe file

3. Download and install Git Extensions:
https://github.com/qgitextensions/qgitextensions/releases

o

Look under ‘Assets’ at the bottom of the latest version to get the installer,
will be a .msi file

If you are unsure of the settings to choose when asked, | suggest the
following:

https://git-scm.com/downloads
https://i.imgur.com/BlBHoa4.png
https://i.imgur.com/43YKeUR.png
https://notepad-plus-plus.org/downloads/
https://i.imgur.com/5DMU8kX.png
https://i.imgur.com/1vSw8qp.png
https://i.imgur.com/xOno1sH.png
https://i.imgur.com/f3MpqGN.png
https://i.imgur.com/63tu1CB.png
https://i.imgur.com/ygaIOKY.png
https://i.imgur.com/esE82So.png
https://i.imgur.com/ydRPFxq.png
https://i.imgur.com/9gAaZQL.png
https://download.kde.org/stable/kdiff3/
https://github.com/gitextensions/gitextensions/releases

o Select SSH Client
o Telemetry privacy policy
4. Go to where you want to have the Git stored on your PC, for HOI4 modding that
would likely be: \Documents\Paradox Interactive\Hearts of Iron [V\mod
5. Right click and select ‘GitExt Clone’
6. Firstline is address of your mod, normally:
https://github.com/Kaiserreich/Kaiserreich-4-Development
o If you are someone joining an existing Git then ask the author for this
address, if it is private then ask them to give you access to it
7. Second line should auto fill as the folder you right clicked in
8. Third line should be the folder you want to create in there, unless specifically told
otherwise, | would avoid changing this from the suggested name
9. Hit Clone and wait for it to download and setup
o For HOI4 modding you will need to put a .mod file in \Documents\Paradox
Interactive\Hearts of Iron IV\mod in order to tell the game you have added
a mod, most teams put one inside the Git folder so just copy (not move)
that one, though if in doubt ask
o Note that accents aren’t supported by .mod files, so if you have an accent
in your username you’ll need to clone the Dev Build into a different folder

5. Git Basics

There are a few basic windows you are going to need to get familiar with. First is the
right click menu, available by right clicking on the folder containing your Git.

https://i.imgur.com/xr5sQQS.png
https://i.imgur.com/cp6tvms.png
https://github.com/Kaiserreich/Kaiserreich-4-Development

% GitExt Open repository
) Gitext Commit..

& GitExt Pull...

i GitExt Push...

% Git Extensions > % View stash

-

Give access to > o+ LB GRS
Restore previous versions ’E‘ Checkout branch...
Include in library > | % Checkout revision..
™ Scan with Malwarebytes i Create branch..

Pin to Start e : i

+++ Open with difftool
Send to U3 File history
Cut ¥ Reset file changes...
Copy -+ Add files...

<4 Apply patch..
Create shortcut
Delete i Settings
Rename

Here you can see several useful commands. The four main ones you are going to be
using are ‘GitExt Open repository’, ‘GitExt Commit...’, ‘Pull...” and ‘Push...’. I'll go
through them one by one.

‘GitExt Open repository’

‘GitExt Open repository’ will take you to the menu of your project, something like this:

Start Repository
Q oEe-

?. Author:

Mavigate View

-

o] Author date:

. Commit date:
Commit hash:

F

Child:
Parent:

Fixed BRA inviting the wrong African na

Contained in branches:
master

Contained in tags:
015.2

Derives from tag: 0.13.1 + 338 commits

<

EZ piff T2 File tree
| .github
wscode
commaon
events
gfx
history
interface
localisation
map
music
portraits

snund

2

Commands GitHub

Plugins Tools Help

~\Documents\Paradox Interactive\Hearts of Iron WVimod\Kaiserreich Dev Build + I= master v| 2R & £ Commit (0)

Alpinia Added a 11-slot state category and fixe.
2 days ar
2 days ar
2a2f244z
854082
fh706a4

Wallonia no longer builds factories in D

0.152[.] Retroactive commit, sincei

Fixed ANG's event to unlock Five Stars,
Macau is no longer an enclave,

Some loc fices,

CRO is now properly turned into a crow

IRA loc change for Umbrene.

I Fixed BRA inviting the wrong African n
Small change in task forces of NFA
Added some content for Shandeng (5p.

Crossing the Border focus for CAN now.

> sound effects play for every tag appare...

GPG @@ Console

L

M@ Awpinia
I Apinia
1@ Apinia

Added a bunch of HOL portraits from =...] Alpinia

[Apinia
@ Apinia
@ Apinia

[Awpinia
@ Apinia

iﬁg Gidecnes

o
| DSFDarker

T

@) Rylock

Nijato

2 days ago
2 days ago
2 days ago
2 days ago
2 days ago
2 days ago
2 days ago
2 days ago
2 days ago

2 days ago

2 days ago
2 days ago
2 days ago

2 days ago

b7effdd
fid3efb
aSdsecd
f93958d
fSab7dl
a7343c4
26d637d
BleaZef

854FFas

fb786a4
cScc3ce
f711357

9112598

From here you can see a timeline of the project from commit to commit. Each one can
be clicked on to view details about what was changed, who made the change and so

on.

Right clicking on a commit brings up a new menu:

3

W

Copy to clipboard

Iy Checkout branch... »
L Rebase current branch on »
#. Reset current branch to here..

Iy, Create new branch here.. Ctrl+B
4% Rename branch.. »

'y Delete branch... ’

¢ Create new tag here.. Ctrl+T

% Checkout this commit...

4 Revert this commit...

& Cherry pick this commit...

& Archive this commit...

EE Advanced »

ES Compare ’
: Mavigate »
1] View »

From here it is possible to switch between branches, merge branches and more, but
details on that later in 8. Resetting and 10. Branches.

‘GitExt Commit...’

‘GitExt Commit...” will take you to this window where it is possible to look over the
changes you are about to make.

}{ Commit to master (C\Users\wgiim’Documents\Paradox InteractivehHearts of Iron Wimod\Kaiserreich) O =

2 | %‘.Working directory changes ~ diff --git a/Kaiserreich.mod b/Kaiserreich.mod »
index 4f503a7db..2155%=5af 100644

——— a/Kaiserreich.mod

+++ b/Kaiserreich.mod

@@ -1,4 +1,4 @@

—name="Kaiserreich Dev Build®

+name="Kaiserreich Dev Build MAGIC"™
path="mod/¥aiserreich/"

tags={

"Alternative History"™

‘ﬁ | & Unstage] Stage | @

b
< >

— =] . . »
|'i_.-," Commit S =1 Commit message ~ Options =

& Commit & push ‘
1 amend Commit
21 Resetal changes i

¥ Reset unstaged changes

Committer Zankeas < =S NREN - i master Staged 0/1 Ln O Col O
On the top left (1) you can see a list of all files that have been changed within the mod.
Selecting one will show a line by line breakdown of the changes on the top right (3),
here you can see | am adding ‘MAGIC’ to a line in the file called ‘Kaiserreich.mod’.

The bottom left window (2) is the ‘staged’ files, these are the changes you are about to
commit, right now there are none, but double clicking on a file in the top right will stage
it. Equally using the arrows in between the two windows (1 and 2) can be used to stage
files.

When you have checked your changes and have staged them, it is time to commit
them. Type a short message in the box to the bottom right (4) explaining what you have
done, then press either commit (5) to make the changes, or commit and push (6) to
make the changes and then push them, more details on pushing in a moment.

‘Pull...

‘Pull...” will take you to this window:

_‘,{ Pull (C:\Users\ Mgl Documents\Paradox Interactive\Hearts of Iron Vimod\Kaiserreich') X

Hide help Ful from

@ Remote |nr|g|n| ~||g Manage remotes
O url https: f/aitiab. com/} reich fkaiserreich

4 LOCAL Braridh

ather =
Local branch Aoy

remote

repository Remote branch v
Merge options

current
REMOTE (O Merge remote branch into current branch

(®) L1 Rebase current branch on top of remate branch, creates linear history (Use with caution)
() Do not merge, only fetch remote changes
Tag options
(®) Follow tagopt, if not spedfied, fetch tags reachable from remote HEAD
(0) Fetch no tag

squara = green =

current branch W Gommil

postix for files if
TAAA merge conflicts ocour
Solve conflicts Stash changes [] Auto stash & Pull

Here you are able to pull changes, while it looks all very complicated, the important
setting to look at is ‘Merge options’. Here you can ‘Merge’ or ‘Rebase’.

Merging takes remote changes and local changes, and then attempts to fuse them
together in a special ‘Merge Commit’, as shown by this handy diagram:

merge commit

L# M current

r REMOTE

other
remote
repository

square = green =
il current branch naw commil

postfix for files if
FARA marge conflicts eccur

The left part is before the merge, with commits (a) and (b) at the bottom. The user has
made two commits locally, (c) and (d), while two commits have been made by someone
else remotely, (e) and (f). On the right we see the merge; a special merge commit, (), is
created, fusing those two lines together.

‘Rebase’ is the alternative method:

LOCAL
other
remote
repository

current
* REMOTE

square = green =
current branch riew commil

postfix for files if
o ARA marge conflicts ocour

The left part is before the rebase, with commits (a) and (b) at the bottom. The user has
made two commits locally, (c) and (d), while two commits have been made by someone
else remotely, (e) and (f). On the right we see the rebase; the two local commits, (c) and
(d), are temporarily undone, the remote commits applied, (e) and (f), then the two local
commits, (c) and (d), are reapplied at the end, creating a nice clean line.

Some teams prefer merge, some prefer rebase, so if you are joining a team it is worth
asking which one to use. If you aren’t sure or don’t care, rebase is generally neater so if
in doubt I'd suggest using that. If you are setting up a team and want to know why |
suggest rebase over merge, I've explained my reasoning in the Q&A in the appendix.

‘Push...’

‘Push...’ is the final command, one which can be done by right clicking on your Git
folder or from within the commit window under ‘Commit and push’. Clicking it will bring
up this window:

_‘t{ Push (Ch\Users' ol [ocuments\Paradox Interactive\Hearts of lron WVimod'\Kaiserre... O X
Push to
(@) Remote origin ~| | Manage remotes
ol https: /fgitlab. comkaiserreich kaiserreich

Push branches push tags Push multiple branches
Branch

Branch to push | V! ta | v|

Show options

Pull @& Push

Here you can see which local branch you are going to push to which remote branch,
more detail in 10. Branches, but for now all you need to do is click ‘Push’ and your local
changes will be given to the remote Git.

Help My Push Was Rejected From ‘Origin’

Scary as I'm sure it is, it is actually very simple. Here is the popup:

Push was rejected from "origin” d

o Pull latest changes from remote repository

The push was rejected because the tip of your current branch is behind
its remote counterpart. Merge the remote changes before pushing
again.

—> Pull with the default pull action (rebase)
= Pull with rebase

— Pull with merge

— Force push with lease

= Cancel

L] Remember my decision. Cancel

This means your local Git is out of date, almost always due to someone else making
changes since you last pulled. Thus, you can’t push your changes since that would
overwrite the other person’s changes.

The first option is pull with the default action, typically (though it can be changed in the
settings) merge. Pull with rebase and pull with merge are the same as pulling above, so
follow the advice there. Force push is a special kind of push where you overwrite all
changes on the server with your own. You must be very careful about doing this as it
can, and will, delete other people’s work.

Unless you are absolutely sure what you are doing, never force push.

Cancel aborts your push, though leaves your local commit intact.

And that is it, all the basics of Git. You now know what a Git is, how to set one up
remotely and locally, how to make changes locally (committing) and how to move
changes between the remote and local Git (pushing and pulling). Congratulations!

But there is more to learn if you are up for it...

6. Creating a New Git

First, you will need to pick your host, that is the company that will store the online
version of your Git.

The two main options are Github and GitLab. You can make your own mind up as to
which to use, but | am going to assume you use GitLab and use that as the basis for the
guide from this point onwards, though your experience won'’t be that different either way.

First you will need to create the online Git, to do this first create an account with GitLab
at: https://qgitlab.com/users/sign_in

If you are making a Git for a team it is a good idea to set up a group here:
https://qgitlab.com/dashboard/groups

This will let several people administer the Git to avoid the trouble of having only one
admin.

Once you are done you will want to start a new project by clicking the green ‘New
project’ button. From here you will want to name the project as well as give it a
description. You also have the chance to select its visibility level.

For ease of setting up, make sure you tick ‘Initialize repository with a README’.

Once you click ‘Create project’ your new Git will exist on GitLab’s servers, and from
there you can follow the normal setup guide in 5. Git Basics.

7. Manual Merges

We have already talked about the basic types of merging; Rebasing and Merging, but
sometimes they just don’t work. Why is this?

https://gitlab.com/users/sign_in
https://gitlab.com/dashboard/groups

First, it is worth saying that Git has built in tools to automatically merge changes and so
most of the time it will seamlessly handle this all for you. Sadly, sometimes that isn’t
possible. The most common reasons are:
1. Someone has changed the same line of code as you have and Git isn’t sure
which change to use
2. Someone has changed a binary file (a file that can’t be opened in a text editor,
such as a graphics file like a .png) and Git can’t merge the files together (you
know, since there aren’t lines of code to merge)
To avoid the mess of manual merges and the difficulty of doing them, as you are about
to see, avoid 1. and 2. as best you can will minimise how often you have to do this,
saving you much effort.

When Git can’t merge automatically happens you have three options:

1. Delete your changes. This will let Git take their changes over yours and resolve
the issue, the downside is you lose all your changes

2. Copy your file out of the mod folder, pull, then put them back in. This will
overwrite all their changes with yours, the downside being they lose all their
changes

3. Use a diff tool, this will let you compare line by line the issue and pick which
version to keep, it gives you the most control and also shows you exactly which
lines are an issue, what their change is, what your change is and what the
unchanged version is. The only downside here is the tool isn't the most friendly
thing to use, fortunately, | have a handy guide for you below.

If you have unresolved merge conflicts, are asked if you would like to solve them now
and click yes, you will be taken to this window:

% Resolve merge conflicts — O et

Unresolved merge conflicts

Open in kdiff3

Filename

events/KR_Mongolia. et

history funits/SIK. tit

|
|
history fstates/745-Portarthur, txt ‘
|

ﬁ The file has been changed both locally{ours) and |

remotely(theirs). Merge the changes. Merge

Local events/KR_Mongolia. txt
Base events/KR_Mongolia. txt
Remote events/KR_Mongolia. bt

B teb

Here you can see the files that can’t be automatically merged by Git. Selecting ‘Merge’
will bring up KDiff3, the specialist merge tool we installed earlier.

Straight away KDiff3 will try to merge and, if you are lucky, will be able to and say there
are zero ‘Nr of unsolved conflicts’. If so you can close KDiff3, save the result and move
onto the next file. If not then things get more complicated.

B3 KR Mongolia:b BASE <-> KR Mongolast LOCAL <-> KR Mongola:st REMOTE - KDif3 _ %
Fle Edt Diecory Movement Difiew Mege Window Setings Help

Z5HE8mMx=xasv2r3s23asc¥ D=szan=

‘@Oﬁ -
b aradggglnt tearts of Iron IVymod) TEWR_Mongola bt 8ASE | .. | B:f: Tron Mongolia. ttLOCAL || ... I’
Encoding: UTF-8-80M style: DOS Topline 1042 : Line end style: DOS Toplne 1649
create : civili 1
e]

countzy_
"
e B | R ———
sube:
s re———
| IR

- Gption-=-{§-fuck

= ~ name-=-mon.35.a

= ~ add pola ez = =150

= - o

= = ~ ideology-=-authoritarian democrat

g
i
5
8

'

3

ipe
hidden_effect-=-{
~ 7 zemove_ideas_with_trait-=-head of_government

¥

1, QWU uiud I R

add_ideas =-{
~ MON_Boris Rezukhin hog_pau

i 7 |

~ popularity-=-0.08 -

~ clr_country flag-=-Ungern HoS
set_country_flag-=-Ungern Dead

s .
|
N

~ set_country flag-=-Ungern Dead

3

Mongola. bxt
nation failed, -civilians -accidentally killed, -chis-aint -good

b wowbbw CDwLLe Dowww

<No szc line>

3

country_event -=-{ -# “7th -Changyka -Khutukthu -begins ‘move -around -COURCIY -TO -gather ‘SUPPOXT -
~ Tid-=-mon.36
~ citle-=mon.36.C

ABBw

Here you can see a breakdown of what KDiff3 is trying to do. (1) is the base file, (2) is
the local file and (3) is the remote, the output is shown below at (4).

The ‘base’ file (1) is the file before any changes were done to, in other words, it is the
file at the last shared moment of history between the two branches.

The ‘local’ file (2) is the file as it is on the branch you are currently on, at the time of the
commit in question where there is the conflict.

The ‘remote’ file (3) is the file as it is on the branch you are trying to fuse into, at the
time of the commit in question where there is the conflict.

The highlighted yellow line is one where KDiff3 can’t work out which of (1, 2 or 3) to use
in (4). Clicking one of the three letters at (5) will select which line to use. The buttons at
(6) let you move to the next yellow line. Once you are done click close, save, and move
onto the next file.

Once you are done with all the files you can move forward as normal. Note that this is
by far the most complicated part of using a Git and only rarely comes up, so don’t worry
if you are struggling here.

One thing to watch out for is .orig files. These are record files that give detailed
information on what happened during a manual merge. They can be saved as an easy
to access record if need to see that information in one place, though all the information
is contained, albeit in a less easy way to find in the File Tree (see chapter 12. History
and the File Tree).

They are created by default when you manually merge a file, so make sure to either
save them outside of the mod or delete them, as HOI4 will try to read them as code,
which won’t go well. If you don’t use them, this automatic creation can be turned off via
Git bash using the command ‘git config --global mergetool.keepBackup false’, and then
also in KDiff3 settings under ‘Directory’, ‘Backup files (.orig)'.

8. Resetting

It happens to all of us, it has all gone wrong, you don’t know where or why, you aren’t
sure what is happening and you just want to reset. Now of course, you could delete the
Git folder and redownload it, but that takes time, effort and is just unnecessary (most of
the time anyway).

Note that doing the following steps will delete all local changes that haven’t been
stashed or committed.

By going into the ‘GitExt Open repository’ window and right clicking on a commit you
can see an option called ‘Reset current branch to here...". Selecting it will bring up this
window:

% Reset current branch ? >

Reszet branch 'master to revision:

clcebddc
Edited this message slightly
Author Zankoas
Commit date: 1 day ago (17.6.20 12:03:37)
Branchies): master
Tag(s): n/a
Reset type

() Soft: leave working directory and index untouched

(® Mixed: leave working directory untouched, reset index

O Keep: update working directory to the commit
(abort if there are local changes), reset index

O Merge: update working directory to the commit and keep local changes
(abort if there are conflicts), reset index

() Hard: reset working directory and index
(discard ALL local changes, even uncommitted changes)

Select ‘Hard’ and click okay. You will now be moved to that commit exactly. If that
commit was the latest commit (labeled as origin/master) you will now have your Git the
same as if you have just deleted it and copied but in a fraction of the time.

In very rare cases, often involving a merge of a rebase, this won'’t fix things. At that point
the easiest cause of action is just to copy out your changes, delete the whole folder and
reclone.

9. Stashes

Say you have some work you want to save while you focus on some other work. You
could copy the file out of your Git, save it somewhere else and then copy back in when
done. While simple, it doesn’t let you see what the changes are or merge back in nicely
if someone else worked on the same file. What you need is a stash!

To manage your stash right click on your Git folder and select ‘View stash’. This will
bring up the following window:

v Stash - O Ed

Show: Current working directory che '| ,/? = diff --git a/Readme.txt b/Readms.txt ~
index aa4e9%cade..4d53celod 100644

R) ——— a/Readme.txt

+++ bfReadme.txt

@@ -1,5 +1,5 @@

Thank you for downloading Kaiserreich for Hearts of In
—This is alpha wersion 0.8 - 'USA! USA! OSA!''.

+This is alpha wersion 0.8 - 'USA! USA!' USA!''. MAGIC
It is NOT save game compatibkle with any prior wversion,
This wversion is compatikble with 1.5.4, it may work wit

There are no stashes,

[] keep index [] indude untracked

Save Changes to Mew Stash

W
£ >

Here you can see | have made a single change; adding ‘MAGIC’ to the Readme.ixt file.
If | wanted to save this | would click the pencil icon to give my stash a name, then
simply click ‘Save Changes to New Stash’.

The changes are now saved in a stash and | can continue working as if nothing
happened.

To see a list of all my stashes | simply open the drop down menu at the top. To apply a
stash, that is to say put the changes back, | select the stash from the drop down menu
and click ‘Apply Selected Stash’ at the bottom. To delete a stash | again select it from
the drop down menu but this time click ‘Drop Selected Stash’.

10. Branches

Sometimes you want people to be working on different versions of a project at the same
time, say two people are working on a hotfix while the rest of the team are working on
the next big release. No need to set up two different Gits, what you need are branches!

Branches let you separate out different versions of a project and have them exist
alongside one another, able to be switched between easily.

There are two branches that will (unless you have picked a different name for them)
exist already; ‘master' and ‘origin/master’. ‘master’ is where your local Git is currently at
while ‘origin/master’ is where your local Git thinks the remote Git is currently at. If you
haven’t pulled in a while, ‘origin/master’ may well be out of date, but it is a useful
indicator of what the latest change you have locally, as well as being useful for telling
you where to switch to if you want to leave another branch.

The end game for a branch is normally merging it back into master, so to ensure that is
nice and easy, follow the rules laid out in 7. Manual Merges.

Creating a Branch

Creating a branch is very simple; you make a commit as normal, but when you go to

push it you tell it to push to a new branch.
Branch

Branch to push |master v| to |my'_shiny_ne'x-.'_l:urand'| v|

Show options

By typing in a new branch name there and clicking ‘Push’ it will tell you that that branch
doesn’t exist remotely and ask if you would like to create it, say that you would and
magic, you have created a new branch.

Moving Between Branches

There are several ways of moving between branches, but my personal favorite is via
resetting. This isn’t the cleanest way but it is visually pretty simple. Note that doing this

will delete all local changes that haven’t been stashed or committed.

Bring up the ‘GitExt Open repository’ window as normal and find the commit of the
branch you want to switch to, normally labeled as ‘origin/NAME_OF BRANCH’. Then
follow section 8. Resetting to switch that branch.

How do | find the branch you ask? Well if it was recently changed you can just look for it
in the ‘GitExt Open repository’ window, but if you can’t find it you can select it from the
branch list here:

M|

&~ & =N Branches: = |{Ch = || Filter: &~ o

Local

Tag

Remote

First click on the little cog and make sure ‘Remote’ is selected. Then select the drop
down menu to the left and it will give you a list of all the branches in the Git. Click the
one you want, hit enter, and you will be taken to it.

Once you are done with the branch use the same method to reset back to master.

Making Changes on a Branch

To make a change on a branch simply:
1. Move to it as described above
2. Commit as normal
3. Then as with creating a branch, change the branch you are pushing to to that
branch
Simple as pie.

Pulling on a Branch

If several people are working on a branch at the same time and you want to pull
changes, you can either switch out of it to master, pull as normal and switch back, or
just directly pull their changes. To do this select Pull as normal, but change the remote

from master to your branch name like so:
Pull from
@® Remote |YOUR_BRANCH_NAME] [& Manage remotes

) Ul

Merging Branches

Finally, how to merge a branch in. First you want to move to the branch in question.
Then right click on the commit labeled ‘origin/master’ and select either ‘Merge into
current branch’ or ‘Rebase current branch on’. While rebasing is neater, for larger
branches it is very difficult and time consuming, so merging is normally preferred.
Once you click ‘Merge into current branch’ you will be greeted by this window:

3! Merge branches x

Hide help Merge
Hover to see scenario when fast forward is possible. =
Merge branch |Dr|gln,‘master M=

merge commit

(0 Bl current Into current branch ~ master

(@ Keep a single branch line if possible (fast forward)
O Always create a new merge commit

|:| Do not commit

[show advanced options

O S v
Here you can confirm that you are merging the right branches together. Once you click

merge Git will try to auto merge. If it works, great, if not, as with 7. Manual Merges, you
will be taken to the Manual Merging window.

Once it is done you will have a local Git that is the fusion of both branches. If you want
to update the branch with changes from master you simply commit and push to the
branch, while if you want to update master with the changes from the branch you
commit and push to master.

11. Tags

Tags are a wonderful tool enabling you to easily mark important versions of the mod,
without needing to have full branches for them. This is often used to mark release
versions, though can be used to mark any version you feel is worthy. Just like with
branches, you can then easily jump to each tag, saving you scrolling through hundreds
of commits to get there.

To create a tag, first find the commit you want to mark and right click on it, then select

‘Create new tag’:
ck, and AA hard/soft attack.

uId come sooner. | 0 Copy to clipboard .

Merge into current branch »
focus icons!
‘L Rebase current branch on »
L T #. Reset current branch to here
Iz Create new branch
or % Compare »
one-time fighter b “-4' Create new tag ove
% Checkout revision
n all ships " Revert commit
& Cherry pick commit
) 4 Archive revision
1S NOW.
& Advanced b
;. Navigate]
1] View]

That will bring up the following window:

% Create tag >
fight
Tag name |1.2.1

= Create tag at this revision |3dh?SUC33C & s
Push tag to 'origin’
Annotated tag w

Message Commit used for patch 1.2.1|
exili
_4 Create tag

Give your tag a name, such as the release version number you are marking (here
1.2.71’), tick 'Push tag to 'origin" and then select ‘Annotated tag’ from the drop down
menu. Fill in the message with what the tag is, then click ‘Create tag’ and you are done!

12. History and the File Tree

One of the headline benefits of a Git is that, by storing changes rather than whole new
versions, you are able to see every version of the mod that has ever existed. In other
words, the entire history of the project is available to you.

The main way of viewing this history is in the timeline. You are likely familiar with it as it
is the main page you land on when opening GitExt. It contains a list of all the commits
made in chronological order. You can see what it looks like here:

oops C/:_.\) Rylock 3 years ago el6léfa
- updating namelists Herkles 3 years ago bl87bée
fix for remaining namelist omissions G}D Rylock 3 years ago Scodess
added missing tags to namelists C/:_.\J Rylock 3 years ago 9d45a66
Update KR_labal_Shammar_l_english.yml typo sorry @ OMD 3 years ago d588642
map fix for Alaska/Canada border C/:_.\) Rylock 3 years ago frd@ed2
fixed Annexations file error C/D Rylock 3 years ago 4caBle3
Update KR_Jabal_Shammar_|_english.yml| added leader descs for the two Ho5s @ OMD 3 years ago e77ad%fc
Hit Austria with the nerf bat a couple of times (AUS will no lenger have ridiculous manpower after inte... ik"‘é Vidyaorszag 3 years ago c4fB1F3
Update JBS - Jabal Shammar.txt to differentiate Saud (our main guy) from his sen (Abdulaziz bin Saud) ... @ OMD 3 years ago S3bfada
Axed Z0_idea from other places not in history files @ Delincious 3 years ago 239F1cf
some additional error checks to ensure complete peace between both sides in white_peace_with_ROOT ... C/D Rylock 3 years ago 14c65d7
Bulgarian fixes /> VirtualHummingbird 3 years ago 594777c

Clicking on any commit will bring up details about it on the left hand side, showing you
who made it, what message they gave, when they changed it and so on.

Along the bottom you will be able to see the ‘Diff’ view, showing you the Difference
between this commit and the prior one, or in other words, what they changed.

Next to that view is the file tree view. You can access it by clicking ‘File tree’, letting you
browse the mod as it existed at the time of that commit. To browse the mod as it
currently is simply select the latest commit. You can see the file tree view below:

EZ Diff T2 Filetree J7 GPG @@ Console
_ .github
_ wscode
. commaon
_ events
g
_ history
| interface
_ localisation
. map
| music
. portraits
_ sound
----- i gitignore
----- i/ descriptor.mod
----- i+ Kaiserreich Dev Build.mod

H ' - -
ikl Kaizerreich.mod

L Readmetxt

Within this view right clicking on a file will bring up a menu that lets you access several
useful functions:

#. PResetto selected revision

ES Open with diffteol F3
| .+ Openworking directory file with... Ctrl+0
+~ Open this revision (temp file) Ctrl+F3
#~ Open this revision with... (ternp file) Ctrl+Shift+F3
bl Saveas.

| o+ Edit working directory file F4
9 Copy full path Ctrl+C

Show in folder

B

View history H
Blame

Archive...

¢ E &

Clean this folder in the working directory...

Stop tracking this file

Assume unchanged this file

Find in file tree... Ctrl+F

+| %

Expand all (takes a while on large trees)

Collapse all

The ‘Save as...” button lets you save a copy of the file as it existed in that commiit,
useful for pulling files out of old versions of the mod without having to fully reset back to
it.

The “View history’ button lets you view the history of that file only. This will bring up a
view which looks similar to the main mod history, but crucially it only shows you commits
which changed this file. As a result, you can easily see who has changed a given file,
when, what they did and so on. You can also access this by going into the mod folder in
file explorer, then right clicking it, mousing over ‘Git Extensions’ and then clicking ‘File
history’. Either method will lead you to the same result which you can see below.

3 File History - events/Afghanistan.txt (events/KR_Afghanistan.tut) - ~\Documents\Paradox Interactive\Hearts of Iron V\mod\Kaiserreich Dev ... - O X
Branches: » ° = | Filter T~ @ |8~~~
I've either fixed a lot of Al factors or broken the entire mod. ﬂ Alpinia 11 days ago 4c8bgel ™
a well cooked batch of logging dr_njitram 3 months ago 88Ta28c
forgot to switch supply area @ Rylock 5 months ago c7bc4sa
Added a missing state to the AFG-DEH peace event. ﬂ Alpinia & months ago dbdat3a
Fixed a missing state in the AFG-DEH peace deal. ﬂ Alpinia 6 months ago 44dbada
And moreeeee a Zankoas 7 months ago 9cedBab
Revert "Purged all references to empty leader descriptions,” ﬂ Alpinia 8 months ago 822d335
Purged all references to empty leader descriptions. ﬂ Alpinia 8 months ago cB@31568
A large logging update, including cleanup of shitty code, and consclidating of triggers like on_add @ dr_njitram 1 year ago 8342bas
4.1 dead lines saved, and cwtools 4.1k errors closer to working a Zankoas 1 year ago 929588
some formatting and fixes from the validator @ Pietrus 1 year ago 71dfdf3
White space cleared the mod g Zankoas 2 years ago 1561da2 v

Finally there is the ‘Blame’ button. The one will, as with ‘View history’, bring up a history
view of all the commits that have changed this file, but this time highlighting who last
changed each line of the file, giving you even more granular control. You can see an
example below:

)

31
4,2.19 17:89 - Jeankedezeehond - events/KR_Afghanista 32 is_triggered only = yes
"ﬂla.s.lﬁ 13:46 - DoctorPainkiller - ewvents/@@_Afghanis 33
i8.4.18 28:31 - Rylock - events/KR_Afghanistan.txt 34 immediate = {
r 35 set_country_flag = DEH_afghan_war_happened
! 36 }
37
18.8.16 13:46 - DoctorPainkiller - events/@@_Afghanis 33 option = {
39 name = afg.B.a
i3 48 ai_chance = {
“21.11.20 ew:@7 - Alpinia a1 base = 188
18.8.16 13:46 - DoctorPainkiller - events/e@_aAfghanis 42 }
Ell.fl—.lg 16:18 - Rylock 43 add_manpower = 20000
iy 18.8.16 13:46 - DoctorPainkiller - events/@@_Afghanis a4 declare_war_on = {
y 45 target = DEH
}:22.1.17 88:89 - Nijato - events/88_Afghanistan.txt 46 type = annex_everything
18.8.16 13:46 - DoctorPainkiller - events/e@_Afghanis 47 I
4.4.17 86:85 - Rylock - events/KR_Afghanistan.txt 48 hidden_effect = {

_.9.4.19 89:58 - Rylock 49 add ideas has scripted peace

13. Appendix

And that’s it! You should now know enough to get going on your first Git. This guide was
designed to be as easy to read as possible so suggestions and feedback are very much
welcome. Thanks for reading and | hope it was of some use to you!

Zankoas

Troubleshooting

While tech support is beyond this guide, and there are a million and one potential issues
you might face, there are a few common ones | think it worth putting basic
troubleshooting steps here for.

| entered the wrong username or password!

Sadly GitExt can’t tell if your username or password is wrong, so it will just give you the
generic ‘access rejected’ message. To prompt GitExt to ask again, head to the windows
‘Credential Manager’, then ‘Windows Credentials’ and look for gitlab.com. Select it from
the list and delete it; next time GitExt tries to access something it will once again prompt
you for your username and password.

GitExt is crashing on me even after reinstalling!

If you are on windows, heading into the temporary GitExt folder in %APPDATA% and
deleting it has been known to fix crashes. This will wipe your local settings, but if you
are crashing, it's worth a shot.

GitExt asks me for my login details every time | start windows!

1.

Make sure you have updated to the latest git version, see 4. Setup Guide on
install/updating instructions

Open a git Command Line Interface from GitExt clicking this button in the Open
Repository Window:

){ Kaiserreich Dev Build {master) - Git Extensions / -
Start Repository Mavigate View Commands GitHub Plugins Tools Help

o | 8| ==l | =l v| - ~‘\Documents\Paradox Interactive\Hearts of [ron Vimod\Kaiserreich Dev Build =~ [o master v| - & Commit (0) Q_‘ v| B OW | Branches:

e loa B e L L e S S e s N
In the prompt that will appear type “git config --global credential.helper wincred”
and press enter

Go to the Windows Credential Manager

a. In Windows 10, click the start button where all your apps can be found and
type “Credential”
b. In that window, go to Windows Credentials and delete all the ones that
include “GitHub”
5. Try pulling again from GitHub
a. It will try to log you in to GitHub in your browser, input credentials if
necessary
b. Give access to the Git Credential Manager app to your account (should
happen immediately after you log in to your GitHub account)
6. Double check you've pulled correctly by confirming there were no errors during
the pull, then pull again to confirm your credentials are saved (i.e. you don’t get a
popup asking for them)

Q&A

Why only talk about GitLab and GitHub? Why only talk about GitExt? Why don’t you
mention *insert other thing here*?

In order to keep this guide short, simple and accurate, | have only talked about what |
am confident in and with minimal other options. Ultimately if you are at the point of
questioning which host or client to use, you are beyond this simple guide.

What if | want to use another client?

Then go for it! While this will make this guide slightly less relevant to you, the
fundamental concepts of committing, pushing, pulling and so on are universal between
all Git clients.

Why do you suggest rebase over merge when merge is the default?

In my experience modding, teams tend to make lots of small commits rather than
singular larger commits. In that environment having many merges can quickly make
reading the Git history difficult, so using rebase makes more sense. One of the reasons
merge is the default is that rebase technically changes the history of the project. For
mods this isn’t something we really care about, but for a large project where
accountability and security are primary concerns, this is often a deal breaker.

Why is there no section on Mac or Linux?

Aside from a lack of personal experience using a Git on them, the audience for a GUI
client for someone modding on them is tiny so | find it difficult to justify spending time
expanding the guide for them. That said, | wouldn’t be opposed to adding a short follow

up section for them; if someone with more experience is interested in writing it please
get in contact with me.

Does Git actually store changes as the difference between the current and the previous
version?

Technically no, it doesn't. If you really think about it, it can’t be that way as that would
mean that in order to relocate to a different commit it would need to iterate through
millions of diffs from the very start to that new commit, which would take ages, yet Git
can do it almost instantly. Git actually stores commits as snapshots, but simply shows
you the diff to make it easy for you to understand. | find people tend to ‘get it quicker
when thinking about Git in terms of diffs rather than snapshots and so have gone with
that approach, even if it is technically false. If you are interested and want to learn more
about exactly how it works, Derrick Stolee has a great blog post about it here: Commits
are snapshots, not diffs

Changelog

1.15 - Updated Discord usernames to match new format

1.14 - Improved linking between the document, and adjusted wording to reflect that the
initial branch may no longer be called ‘master’

1.13 - Maintainer changed from Zankoas to Alpinia

1.12 - Added a Q&A explaining that Git technically works via snapshots, not diffs

1.11 - Split the Q&A into the old Q&A and a new troubleshooting section, adding new
steps you can take to deal with credentials being forgot

1.10 - Added a new section on history and the file view, updated images throughout,
made the install instructions easier to follow

1.9 - Updated the setup guide to reflect new install options, added new intra-document
links, changed the KDiff3 install link to the new repo

1.8 - Prettified some of the links along with minor grammar tweaks

1.7 - Updated the resetting guide for the new options, as well as some grammar tweaks
to help readability

1.6 - Changed link formatting to be easier to read as well as redoing some images to be
clearer

1.5 - Added two new questions to the Q&A, plus minor formatting tweaks

1.4 - Updated images, title names and text to reflect the new GitExt Ul, made some
additional clarifications to the merging section, added a Q&A regarding other clients, as
well as some minor formatting and typo fixes

1.3 - Added a message about the new GitExt Ul and added a guide to using tags, along
with some minor formatting and grammar tweaks

https://github.blog/2020-12-17-commits-are-snapshots-not-diffs/
https://github.blog/2020-12-17-commits-are-snapshots-not-diffs/

1.2 - Changed chapter order and expanded the manual merging section

1.1 - Added a guide to stashing, created an appendix and made clarity tweaks all over
thanks to feedback

1.0 - Initial version

Credits

Maintained by Zankoas until 1.13, then Alpinia

Written by Zankoas

Stashing guide written with the help of Paul

Credentials being forgot troubleshooting steps written with the help of McOmghall
Improved with initial feedback from Yard1, Gunnar Von Pontius and Jeankedezeehond
among many others

	Modding Git Guide
	Index
	1. Introduction
	2. Dictionary
	3. Why use a Git?
	4. Setup Guide
	5. Git Basics
	‘GitExt Open repository’
	‘GitExt Commit…’
	‘Pull…’
	‘Push…’
	Help My Push Was Rejected From ‘Origin’

	6. Creating a New Git
	7. Manual Merges
	8. Resetting
	9. Stashes
	10. Branches
	Creating a Branch
	Moving Between Branches
	Making Changes on a Branch
	Pulling on a Branch
	Merging Branches

	11. Tags
	12. History and the File Tree
	13. Appendix
	Troubleshooting
	I entered the wrong username or password!
	GitExt is crashing on me even after reinstalling!
	GitExt asks me for my login details every time I start windows!

	Q&A
	Why only talk about GitLab and GitHub? Why only talk about GitExt? Why don’t you mention *insert other thing here*?
	What if I want to use another client?
	Why do you suggest rebase over merge when merge is the default?
	Why is there no section on Mac or Linux?
	Does Git actually store changes as the difference between the current and the previous version?

	Changelog
	Credits

