
1

Smart Contract Developer Bootcamp
Weekend Track: Day 2 Exercises:

Brownie

2

Software Installation​ 2

Exercise 1: My First Brownie Project​ 3
Setting Up Brownie​ 3
Creating The Smart Contract​ 10
Deploying and Interacting With the Smart Contract​ 11
Bonus Exercises:​ 15

Exercise 2: Brownie Starter Kit​ 19
Downloading the Brownie Starter Kit​ 20
Setting Up The Brownie Starter Kit​ 21
Compiling and Deploying The Smart Contracts​ 22

Price Feed Contract​ 23
API Consumer Contract​ 25
VRF Consumer Contract​ 27

Bonus Exercises:​ 29

Exercise 3: Deploying to a Local Network​ 30
Viewing Your Networks​ 30
Setting up the Local Ganache Network​ 32
Deploying and Interacting With the Smart Contracts​ 36

Price Feeds Consumer Contract​ 36
Forking Ethereum Mainnet​ 37
Bonus Exercises:​ 39

Exercise 4: Testing Smart Contracts​ 43
Executing the Unit Tests​ 43
Executing the Integration Tests​ 44
Checking the Solidity Coverage​ 45
Checking in your Project​ 46
Bonus Exercise:​ 51

Appendix: Troubleshooting​ 52
Installing Pipx and Brownie​ 52
Running Scripts​ 53

Software Installation
Please ensure you’ve completed the setup Instructions before proceeding.

https://chain.link/bootcamp/brownie-setup-instructions

3

Exercise 1: My First Brownie Project
In this exercise, you’ll use Brownie to create a new project that contains a simple smart contract
that stores and retrieves a value, then you’ll deploy it to the Kovan network and interact with it.

Setting Up Brownie

1.​ Open Visual Studio Code

2.​ On the top header menu, choose View -> Terminal to bring up the VS Terminal (or press
CTRL + `)

3.​ Create a new directory called ‘my-first-brownie-mix’ using the mkdir command.

mkdir my-first-brownie-mix

4.​ Head into the directory by typing ‘cd my-first-brownie-mix’

cd my-first-brownie-mix

5.​ In the top VS menu, choose File->Open(or Open Folder), then find your
my-first-brownie-mix directory and choose Open. You should now see an explorer menu
on the left hand side. If the terminal in VS Code is gone, re-open it by going to
View->Terminal (or CTRL + `)

4

6.​ We’re now ready to create a new Brownie project. Check to see if you have Brownie
installed with the following command

brownie

You should get output similar to the following

5

If you get an error, please refer to the installing brownie section of the Brownie setup
instructions web page, and follow the steps there. Alternatively, check out the
Troubleshooting section of this exercises document for other hints.

7.​ Now you’re ready to create a new brownie project. First, initialize a new project with the
following command in your VS Code terminal

brownie init

​ Your folder structure for your project should now look like this

8.​ First thing you need to do is create a new config file. For Brownie, this file is called
‘brownie-config.yaml’, and it contains a number of configuration settings. We’ll leave
most of them as the brownie default values (ie, we don’t need to specify them in the
config file), but we'll add a couple custom config entries in. Create a new file in the
‘my-first-brownie-mix’ folder, called ‘brownie-config.yaml’. To ensure you create the file in
the top level folder, you can click the mouse in the blank space under the folder
structure, it should highlight blue, and you can then click on the new file icon

https://chain.link/bootcamp/brownie-setup-instructions

6

7

9.​ Put the following entry into the config file, then save it. This config tells Brownie do the

following:
-​ To obtain sensitive environment variables from a .env file
-​ References our private key from the .env file for doing deployments. This means

you don’t need to manually interact with MetaMask and sign transactions. You
will let brownie handle it all for you automatically.

dotenv: .env

wallets:

 from_key: ${PRIVATE_KEY}

10.​Next you need to set your environment variables. WEB3_INFURA_PROJECT_ID and
PRIVATE_KEY. In the explorer, directly to the right of your folder name
‘MY-FIRST-BROWNIE-MIX’, press the new file button to create a new file, call it .env.
Once again, ensure the top level folder is selected to ensure you create the file in the top
folder.

8

11.​Open your newly created .env file in the editor by double clicking on it in the explorer
window. Put the following text in the file, then save it.

uncomment me to use the variables

export WEB3_INFURA_PROJECT_ID='aaa5aa5a5a5a55555aaa555a5a5555a'

export PRIVATE_KEY='0xasdfasdfasdfasdfasdfasdfasdfas'

If you want to verify contracts on etherescan

export ETHERSCAN_TOKEN='asdfadfasdfsf'

12.​Replace the contents of the WEB3_INFURA_PROJECT_ID string with the ending string

in the URL that you saved when you signed up for a free Infura key as part of the setup
instructions. It should be something like this: soadhjfjdks8400975984slhfdskjdhf498

13.​Now you need to put your MetaMask wallet account private key in the PRIVATE_KEY

environment variable. Open up MetaMask, press on the three dots to the right of your
account name, then select Account Details -> Export private key, enter in your password,
then copy your private key string, and paste it into your .env file PRIVATE_KEY string.
You’ll need to add `0x` to the start of the private key.

https://chain.link/bootcamp/brownie-setup-instructions
https://chain.link/bootcamp/brownie-setup-instructions

9

NOTE: BE CAREFUL WITH COPYING AND PASTING PRIVATE KEYS FOR
ACCOUNTS THAT HAVE MAINNET FUNDS IN THEM

14.​Your .env file should look something like this (but with different hash values). Save the
file.

uncomment me to use the variables

export WEB3_INFURA_PROJECT_ID='37asdf43sc44eb6asdf4e5be504c4979f'

export

PRIVATE_KEY='0f77asdfsdkllfkh4389543lk5h4lk35h43y5h34jh5jk43h5k4j3k3j45h1

fe210d'

If you want to verify contracts on etherescan

export ETHERSCAN_TOKEN='asdfadfasdfsf'

You’ve now set up your brownie config and .env file. Now you’re ready to create the
smart contract!

10

Creating The Smart Contract

1.​ Select the contract folder in the explorer, then select the ‘New File’ icon, and create a
new file, call it ‘MyFirstContract.sol’, and press enter.

2.​ If it isn’t already open, open your new MyFirstContract.sol file by double clicking it in the
explorer menu. Paste the following into the smart contract file, then save your changes.
This is the same smart contract from yesterday's Remix exercises.

pragma solidity =0.7.3;

contract MyFirstContract {

 uint256 number;

 function setNumber(uint256 _num) public {
 number = _num;
 }

 function getNumber() public view returns (uint256){
 return number;
 }
}

11

3.​ Now that you’ve created your smart contract, you can compile it. In the terminal, type in
the following command to compile your smart contract

brownie compile

4.​ You now have our smart contract ready to go! Next you’ll create a script to deploy the

smart contract to the Kovan network, and execute the two functions in it

Deploying and Interacting With the Smart Contract

5.​ Inside the scripts folder, create a new file called ‘deploy.py’.

12

6.​ Paste the following code into the newly created file, then save your changes. This script
will simply deploy the contract to the specified network, using your account/wallet details
specified in the brownie-config.yaml file.

from brownie import MyFirstContract, config, accounts

def deployContract():
 account = accounts.add(config["wallets"]["from_key"]) or
accounts[0]
 MyFirstContract.deploy({'from': account})

def main():
 deployContract()

7.​ We’re now ready to deploy our smart contract to the Kovan network or a local network.

Back in the terminal, enter the following command to deploy your smart contract to the
Kovan network. If you get an error stating you have insufficient funds, ensure your wallet
in MetaMask has some ETH in it, as per the setup instructions.

https://chain.link/bootcamp/brownie-setup-instructions

13

brownie run deploy.py --network kovan

8.​ You should see your contract deployed to a new contract address on the Kovan network

9.​ Next you’ll create a script to interact with the deployed project. In the ‘scripts’ folder once

again, create a new file called ‘interact.py’, and put the following into the file and save
your work. This file will grab your deployed contract, and call the ‘setNumber’ and
‘getNumber’ functions in it.

from brownie import MyFirstContract, config, accounts, network

def main():
 account = accounts.add(config["wallets"]["from_key"])
 myFirstContract = MyFirstContract[-1]
 tx = myFirstContract.setNumber(123456,{'from': account})
 tx.wait(1)
 print("Number is", myFirstContract.getNumber())

10.​Run your newly created script by entering the following command into the Terminal.

brownie run interact.py --network kovan

14

11.​Copy the transaction hash specified in the output (next to ‘Transaction Sent’, and search
for it on https://kovan.etherscan.io/. You should see the details of the transaction

https://kovan.etherscan.io/

15

Congratulations, you’ve successfully created a new smart contract project using the
Brownie Smart Contract Platform, deployed it to a public test network, and interacted
with your deployed smart contract!

Bonus Exercises:
You can attempt to complete these exercises if you’ve completed the main exercise ahead of
schedule:

1.​ Add a view function to your contract that takes a uint input parameter, and returns the
sum of the stored number and the input number. The function return type should be uint.
Ensure your new contract compiles

2.​ Modify the interact script in your project to also interact with the new function

16

3.​ Create a new contract in the contracts folder called ERC-20.sol. Open the file, and enter
in the full source code for the ERC20 token contract example on the Ethereum developer
tutorials page. The only changes you need to make is to update the pragma Solidity
version at the top of the contract, and to comment out the Approval and Transfer events
in the ERC20Basic contract to avoid compilation errors. You can also update the symbol
variable from ERC to whatever you wish. Save your file.

pragma solidity =0.7.3;

interface IERC20 {

 function totalSupply() external view returns (uint256);

 function balanceOf(address account) external view returns (uint256);

 function allowance(address owner, address spender) external view

returns (uint256);

 function transfer(address recipient, uint256 amount) external returns

(bool);

 function approve(address spender, uint256 amount) external returns

(bool);

 function transferFrom(address sender, address recipient, uint256

amount) external returns (bool);

 event Transfer(address indexed from, address indexed to, uint256

value);

 event Approval(address indexed owner, address indexed spender,

uint256 value);

}

contract ERC20Basic is IERC20 {

 string public constant name = "ERC20Basic";

 string public constant symbol = "ERC";

 uint8 public constant decimals = 18;

 //event Approval(address indexed tokenOwner, address indexed spender,

uint tokens);

https://ethereum.org/en/developers/tutorials/understand-the-erc-20-token-smart-contract/
https://ethereum.org/en/developers/tutorials/understand-the-erc-20-token-smart-contract/

17

 //event Transfer(address indexed from, address indexed to, uint

tokens);

 mapping(address => uint256) balances;

 mapping(address => mapping (address => uint256)) allowed;

 uint256 totalSupply_;

 using SafeMath for uint256;

 constructor(uint256 total) public {

 totalSupply_ = total;

 balances[msg.sender] = totalSupply_;

 }

 function totalSupply() public override view returns (uint256) {

 return totalSupply_;

 }

 function balanceOf(address tokenOwner) public override view returns

(uint256) {

 return balances[tokenOwner];

 }

 function transfer(address receiver, uint256 numTokens) public

override returns (bool) {

 require(numTokens <= balances[msg.sender]);

 balances[msg.sender] = balances[msg.sender].sub(numTokens);

 balances[receiver] = balances[receiver].add(numTokens);

 emit Transfer(msg.sender, receiver, numTokens);

 return true;

 }

 function approve(address delegate, uint256 numTokens) public override

returns (bool) {

 allowed[msg.sender][delegate] = numTokens;

 emit Approval(msg.sender, delegate, numTokens);

 return true;

18

 }

 function allowance(address owner, address delegate) public override

view returns (uint) {

 return allowed[owner][delegate];

 }

 function transferFrom(address owner, address buyer, uint256

numTokens) public override returns (bool) {

 require(numTokens <= balances[owner]);

 require(numTokens <= allowed[owner][msg.sender]);

 balances[owner] = balances[owner].sub(numTokens);

 allowed[owner][msg.sender] =

allowed[owner][msg.sender].sub(numTokens);

 balances[buyer] = balances[buyer].add(numTokens);

 emit Transfer(owner, buyer, numTokens);

 return true;

 }

}

library SafeMath {

 function sub(uint256 a, uint256 b) internal pure returns (uint256) {

 assert(b <= a);

 return a - b;

 }

 function add(uint256 a, uint256 b) internal pure returns (uint256) {

 uint256 c = a + b;

 assert(c >= a);

 return c;

 }

}

4.​ Create a new script in the scripts folder called ‘deploy-erc20.py’. Base the contents of

the deploy script on your existing ‘deploy.py’ file.

5.​ Modify the deploy script so that it deploys your ‘ERC20Basic’ contract instead of the
‘MyFirstContract’ one. You should do the following:

19

a.​ Change the import to ERC20Basic
b.​ Change any variables related to MyFirstSmartContract to ERC20Basic
c.​ Specify an initial token supply in the constructor in the .deploy command. It

should be the first value, then add a ‘,’ before the {‘from: account} part

Spoiler/Solution (highlight to see)

from brownie import ERC20Basic, config, accounts

def deployContract():
 account = accounts.add(config["wallets"]["from_key"])or
accounts[0]
 ERC20Basic.deploy(1000000,{'from': account})

def main():
 deployContract()

6.​ Compile all contracts in your project, then execute your new script

brownie compile

brownie run deploy_erc20.py --network kovan

7.​ Look for your deployed contract on https://kovan.etherscan.io/.

8.​ Create a new script ‘interact_erc20.py’ to mint and send yourself some tokens with the

deployed contract by calling the required functions, and passing in the parameters. For
now you can hardcode your wallet address values, you can obtain them from MetaMask.
I.e send tokens from your current account that you have setup in the private key
environment variable, and send them to another wallet address in your MetaMask.

Exercise 2: Brownie Starter Kit
In this exercise, you’ll download the Brownie Starter Kit, and use it to create, deploy and
execute smart contracts that use Chainlink Data Feeds, Any-API and VRF. This will get you
more familiar with working with smart contracts and scripts in the brownie development
environment.

https://kovan.etherscan.io/

20

Downloading the Brownie Starter Kit

1.​ In VS Code, go to your terminal, then go back to your home folder by typing in ‘cd ..’ and
pressing enter

cd ..

2.​ Pull a copy of the Brownie Starter Kit with the following command:

git clone https://github.com/smartcontractkit/chainlink-mix

Optionally instead of git clone, you could run brownie bake chainlink-mix and then
cd chainlink

3.​ In your terminal, you need to change the directory to your copy of the Brownie Starter Kit
that you downloaded in the previous step.

cd chainlink-mix

4.​ Because we now have a new project in a new folder, we need to switch to it in Visual

Studio Code. Choose File-> Open, find the ‘chainlink-mix’ folder, select it and press
Open. If your VS Terminal has disappeared, re-open it by selecting View-> Terminal (or
pressing CTRL + `). Your VS Code should look like this:

21

Setting Up The Brownie Starter Kit
1.​ First thing you’ll need to do is once again create a .env file in the project folder, and set

both WEB3_INFURA_PROJECT_ID and PRIVATE_KEY values, exactly like you did in
the previous exercise in the ‘Setting Up Brownie’ section. Your .env file should look
something like this (with different hash values). If you have your .env file from your
previous ‘My First Brownie Project’ project, you can also copy that file into this project
folder instead of recreating one.

uncomment me to use the variables

export WEB3_INFURA_PROJECT_ID='37asdf43sc44eb6asdf4e5be504c4979f'

export

PRIVATE_KEY='0f77asdfsdkllfkh4389543lk5h4lk35h43y5h34jh5jk43h5k4j3k3j45h1

fe210d'

22

If you want to verify contracts on etherescan

export ETHERSCAN_TOKEN='asdfadfasdfsf'

2.​ Open the ‘brownie-config.yaml’ file in the project file browser, and uncomment the line

‘dotenv: .env’ by removing the leading ‘#’, then save the file. This will tell Brownie to use
your .env file for loading environment variables.

3.​ Your brownie starter kit configuration is now ready, and we’re ready to deploy our smart
contracts

Compiling and Deploying The Smart Contracts
1.​ Before you deploy the smart contracts in the brownie starter kit to the Kovan test

network, you should compile them first. Run the following command in the terminal

brownie compile

23

Price Feed Contract

The Price Feed Consumer contract makes use of Chainlink Price Feeds to fetch the
current ETH/USD price.

2.​ To deploy the PriceFeedConsumer contract, run the following command in the terminal.

It will execute a script that deploys the compiled contract to the Kovan test network

brownie run scripts/price_feed_scripts/01_deploy_price_consumer_v3.py

--network kovan

24

3.​ To interact with the deployed Price Feed Consumer contract, run the

‘02_read_price_feed.py’ script, which will query the deployed smart contract, and return
the latest price of the specified price feed.

brownie run scripts/price_feed_scripts/02_read_price_feed.py --network

kovan

You have now successfully consumed Chainlink Data Feeds in your smart contract created and
deployed using the brownie development environment.

25

You can do the deployment script, without the --network kovan flag, and you’ll run the script in a
temporary ganache chain as well.

API Consumer Contract
The API Consumer Contract makes an API call via using Chainlink Any-API

4.​ To deploy the APIConsumer contract, run the following command in the terminal. It will
execute a script that deploys the compiled contract to the Kovan test network

brownie run scripts/chainlink_api_scripts/01_deploy_api_consumer.py

--network kovan

5.​ To interact with the deployed API Consumer contract, run the ‘02_request_api.py’ script.

This script will fund the deployed contract with some LINK from your MetaMask wallet,
and then it will execute the ‘requestVolumeData’ function in the contract, which will reach
out to the cryptocompare API to get the current ETH/USD volume

brownie run scripts/chainlink_api_scripts/02_request_api.py --network

kovan

26

6.​ To see the result of the API call in your smart contract, run the ‘03_read_data.py’ script.

Ensure a few seconds has passed since you ran the previous ‘02_request_api’ script, to
ensure the Chainlink Oracle has successfully made the callback transaction

brownie run scripts/chainlink_api_scripts/03_read_data.py --network kovan

27

You have now successfully performed a request for external data, and obtained the result into
your smart contract using a Chainlink oracle. You can verify the result by opening a browser
window, heading to
https://min-api.cryptocompare.com/data/pricemultifull?fsyms=ETH&tsyms=USD and then
searching for the string "VOLUME24HOUR". As per the logic in the smart contract, the result
has been multiplied by 10**18 to avoid any floating point numbers.

VRF Consumer Contract
The VRF Consumer contract performs a request for randomness using Chainlink VRF, and then
stores the resulting random number.

7.​ To deploy the VRFConsumer contract, run the following command in the terminal. It will
execute a script that deploys the compiled contract to the Kovan test network

brownie run scripts/vrf_scripts/01_deploy_vrf.py --network kovan

https://min-api.cryptocompare.com/data/pricemultifull?fsyms=ETH&tsyms=USD

28

8.​ To interact with the deployed VRFConsumer contract, run the
‘02_request_randomness.py’ script. This script will fund the deployed contract with some
LINK from your MetaMask wallet, and then it will execute the getRandomNumber
function in the contract, which will reach out to a Chainlink Oracle and make a request
for randomness

brownie run scripts/vrf_scripts/02_request_randomness.py --network kovan

9.​ To see the result of the randomness request in your smart contract, run the
‘03_read_random_number.py’ script. Ensure a few seconds has passed since you ran
the previous ‘02_request_randomness’ script, to ensure the Chainlink Oracle has
successfully made the callback transaction

brownie run scripts/vrf_scripts/03_read_random_number.py --network kovan

29

You have now successfully performed a request for randomness using Chainlink VRF

Congratulations, you’ve successfully used the Brownie Starter Kit to perform the following:

-​ Deploy three smart contracts to the Kovan testnet
-​ Interacted with a deployed smart contract to use Chainlink Data Feeds
-​ Interacted with a deployed smart contract to perform an API request using a Chainlink

Oracle
-​ Interacted with a deployed smart contract to perform a request for randomness using

Chainlink VRF

Bonus Exercises:
You can attempt to complete these exercises if you’ve completed the main exercise ahead of
schedule:

1.​ Create a new contract in the contracts folder of the Brownie Starter Kit. You can create
or put any contract inside it! If you want some examples, check out the Solidity docs
examples.

2.​ Create a script in the scripts folder to deploy your contract. Use the existing deploy
scripts as a guide for the syntax.

3.​ Compile and deploy your contracts to the kovan network by executing the script you
created previously.

brownie compile

https://docs.soliditylang.org/en/v0.5.3/solidity-by-example.html#
https://docs.soliditylang.org/en/v0.5.3/solidity-by-example.html#

30

brownie run script-name-goes-here.py --network kovan

Create a second script to interact with your deployed contract, calling it’s functions. Use
the existing scripts that interact with contracts as a guide for the syntax that’s needed.
Execute your script in the terminal, and see the output.

brownie run script-name-goes-here.py --network kovan

Exercise 3: Deploying to a Local Network
In this exercise, you’ll deploy the Brownie Starter Kit smart contracts to a local Ganache
network, and interact with them.

Brownie’s built in development network
Brownie has 2 types of local networks:

Those of type `Ethereum` and those of type `Development`.

Ethereum: These are networks that brownie will keep track of all deployments in the build
folder.
Development: These networks will not keep track of deployments, and will be spun up
and torn down for every script.

Viewing Your Networks
1.​ Open Visual Studio Code, ensure your current project is the ‘chainlink-mix’ workspace

from day 2 of the Developer Bootcamp (hint: If it’s not, go File -> Open, and select the
‘chainlink-mix’ folder)

2.​ If it’s not already open, open the VS Terminal (View -> Terminal or CTRL + `)

3.​ If you’re not already in it, head into your ‘chainlink-mix’ folder in the terminal
a.​ Or, you can redownload it with:

 brownie bake chainlink-mix​
 cd chainlink

31

4.​ Once you’re in the mix folder, we can view all the different networks we can connect to
by running:

brownie networks list

And you’ll see an output like:

Brownie v1.14.6 - Python development framework for Ethereum​
​
The following networks are declared:​
​
Ethereum​
 ├─Mainnet (Infura): mainnet​
 ├─Ropsten (Infura): ropsten​
 ├─Rinkeby (Infura): rinkeby​
 ├─Goerli (Infura): goerli​
 ├─Kovan (Infura): kovan​
 ├─sokol: sokol​
 ├─mumbai: mumbai​
 ├─matic-fork: matic-fork​
 ├─binance-smart-chain: binance-smart-chain​
 ├─matic: matic​
 ├─matic-mainnet: matic-mainnet​
 ├─xDai: xDai​
 ├─binance-smart-chain2: binance-smart-chain2​
 ├─ganache: ganache​
 ├─local: local​
 ├─fuji: fuji​
 ├─forked-mainnet: forked-mainnet​
 ├─ganache-forked: ganache-forked​
 └─local-ganache: local-ganache​
​
Ethereum Classic​
 ├─Mainnet: etc​
 └─Kotti: kotti​
​
Development​
 ├─Ganache-CLI: development​
 ├─binance-fork: binance-fork​
 ├─hardhat: hardhat​
 ├─rinkeby-fork: rinkeby-fork​
 └─mainnet-fork: mainnet-fork

32

You may not have all the same networks here. You can ignore the “Ethereum Classic”
networks for now.

This is a list of all the networks we can connect to. If you type:

brownie networks list True

You’ll get an output that shows all the parameters for connecting to those networks.

Running the default development network
When we run a script, we have a default network that is connected if we don’t tell brownie which
network to use. The default network is the development network. We can run a script and
connect to this temporary network by running a script, and not choosing a network.

Setting up the Local Development Ganache Network

1.​ Open Visual Studio Code, ensure your current project is the ‘chainlink-mix’ workspace
from day 2 of the Developer Bootcamp (hint: If it’s not, go File -> Open, and select the
‘chainlink-mix’ folder)

2.​ If it’s not already open, open the VS Terminal (View -> Terminal or CTRL + `)

3.​ If you’re not already in it, head into your ‘chainlink-mix’ folder in the terminal

5.​ The first thing you need to do is download and install Ganache. Run the following
command. You can skip this step if you installed it during the last session for your
project. Remember, you’ll need nodejs installed from the setup Instructions.

https://chain.link/bootcamp/brownie-setup-instructions

33

npm install -g ganache-cli

If you get an error about ‘missing write access’, try running it with sudo in front of it

sudo npm install -g ganache-cli

6.​ Next, run a ganache local blockchain by running the command. You can do this in a new

terminal window in VS Code if you like.

ganache-cli

You’ll see an output like:

Ganache CLI v6.12.2 (ganache-core: 2.13.2)​
​
Available Accounts​
==================​
(0) 0x3060571cA9fF5529CA3b506F8E5A4430E7529006 (100 ETH)​
(1) 0xAE0d6b6b509ebf7945F1898D6284e5d98ab5eE94 (100 ETH)​
(2) 0x8e28474145eE9E09970c0C1C6b22e679BDd1BC81 (100 ETH)​
(3) 0x9a4CCFCf20fe4d6a39d4668B93ff6e461246bEf9 (100 ETH)​
(4) 0x035d52C1399Bb6ee7E0EC0e322F32ac1806678a0 (100 ETH)​
(5) 0xAF01f6e7Ac2972a892638B7c48A0D1f34cB166F5 (100 ETH)​
(6) 0x394bb4F7983eb23952B7B1c5cffDd8E7028Fd5CB (100 ETH)​
(7) 0xf312e601a5EdD3B79Fc414B416f3ED405D7fc034 (100 ETH)​
(8) 0x367140b3D87Cd1EEDD71A0D970087a7d2671086E (100 ETH)​
(9) 0x59AFDb5c40751A72Ee50Dd2B1759Ca6ba5763309 (100 ETH)​
​
Private Keys​
==================​
(0) 0x31ccb3c5133784d834dc2036281ab04906621a8a258548969d595d931d35717a​
(1) 0x74d40321a4dbdb5b0af2d70c0132fa51eeb85a92c2096e7084a4c7c05a3aaab5​
(2) 0xd208ba7f63bcd4b95a60298bfb046ac12c80e332ee85de514409cdb526aff746​
(3) 0xe9d0684e5f041aa3e228f9cb764f4a5d6a8920682ed490376a1d926e144950db​
(4) 0xe57eb35c6ec64222ffec673815c614c8dbc9d59c458484dea3cad71e41e078e3​
(5) 0xa67ed4a39a2693f844aa067a18bbbbe25bec867aa47db91ef042bdada14d6e3d​
(6) 0x9c3029c56963be6b684797a81709cdcc5f21fd7e63dd83e413a9b2c2ee0c2a71​
(7) 0x24b33f1502f237583c6a5e2ca4eb193ff581e04039c9ecdeec8b90b609f514e5​
(8) 0x2297dc7a0db1a1586c2676d2270e5698839e745ba183cbfdc4b2e5ddf33421a1​
(9) 0x6010cd4aef2fb2306e26554a22b96ced97c7cc4c6ed158b6b3472e75ab604577​
​

34

HD Wallet​
==================​
Mnemonic: large reopen story nose exclude coach truck order purse

glide mandate round​
Base HD Path: m/44'/60'/0'/0/{account_index}​
​
Gas Price​
==================​
20000000000​
​
Gas Limit​
==================​
6721975​
​
Call Gas Limit​
==================​
9007199254740991​
​
Listening on 127.0.0.1:8545

7.​ Next you need to add a new network to the Brownie config so that it knows about your

local Ganache instance. Run the following command. If you get an error about Ganache
already existing, you can ignore it and move on.

brownie networks add Ethereum ganache host=http://localhost:8545

chainid=1337

Now we have 2 choices of where we want to deploy. We can deploy our scripts from the
persistent ganache network, or our development temporary ganache network.

The development network is network development, and the persistent one is ganache.
Let’s change our default network to ganache. This means that we will need our
ganache-cli chain to always be running.

35

Let’s change our brownie-config.yaml to look like:

Deploying and Interacting With the Smart Contracts

Price Feeds Consumer Contract
To deploy the PriceFeedConsumer contract to your local Ganache network, run the
following command in the terminal. It will execute a script that deploys the compiled
contract to your local Ganache network, along with some other mock scripts that mock
up interaction with Chainlink Oracles and smart contracts.

brownie run scripts/price_feed_scripts/01_deploy_price_consumer_v3.py

36

To interact with the deployed Price Feed Consumer contract, run the
‘02_read_price_feed.py’ script, which will query the deployed smart contract, and return
the latest price of the specified price feed. You will notice the value is set to a static
amount. This is because our local network is a fresh blockchain without any data, so
we’re just mocking up a Price Feed Aggreagator contract.

brownie run scripts/price_feed_scripts/02_read_price_feed.py

37

You have now successfully used Chainlink Data Feeds in your smart contract running on a local
Ganache network.

Forking Ethereum Mainnet

1.​ Now that you’ve got a local Ganache network working, let's modify it and change its
initial state to be a fork of the current Ethereum mainnet, and then deploy and interact
with a Price Feed Consumer contract. First, you should tell your brownie config to use it
as the default network. Update the brownie-config.yaml file, and set the default network
to mainnet-fork:

networks:

 default: mainnet-fork

If you scroll down in the config file, you will see that mainnet-fork network uses a specific
eth_usd_price_feed address. If you head over to the Chainlink documentation, you will
see that this is the contract address for the Ethereum mainnet ETH/USD Price Feed

https://docs.chain.link/docs/ethereum-addresses/

38

You’re now ready to deploy your price feed consumer contract to a temporary local
Ganache network running as a fork of Ethereum mainnet!

2.​ Stop your ganache-cli chain. You can end it by hitting “Ctrl + C”

3.​ To deploy the PriceFeedConsumer contract to your local forked Ganache network, run

the following command in the terminal. It will execute a script that deploys the compiled
contract to your local Ganache network. Take note of the listed block number, it indicates
the exact point in time at which the Ethereum mainnet network was forked. You can look
up the block number at https://etherscan.io/.

brownie run scripts/price_feed_scripts/01_deploy_price_consumer_v3.py

https://etherscan.io/

39

In the output above, you can see the currently returned price of ETH is an actual value this time,
and not a static amount. If you go to the page for the ETH/USD feed on Ethereum mainnet, you
should see a similar result.

Note: You will not be able to run 02_read_price_feed.py…
Can you guess why?

Congratulations, you’ve successfully used the Brownie Starter Kit to perform the following:

1.​ Deploy smart contracts to a local network
2.​ Interacted with deployed smart contracts and mock contracts on a local network
3.​ Created a fork of the Ethereum mainnet on a local network, deployed smart contracts to

it, and interacted with the mainnet ETH/USD price feed.

Bonus Exercises:
You can attempt to complete these exercises if you’ve completed the main exercise ahead of
schedule:

1.​ If you haven’t completed the bonus exercises from earlier, create a new contract in your
contracts folder called ‘ERC-20.sol’, paste the following code in it and save your work.
This is a simple ERC-20 token contract. You can modify the symbol and name
parameters if you wish. If you have already this, you can skip this step

pragma solidity ^0.6.0;

interface IERC20 {

 function totalSupply() external view returns (uint256);
 function balanceOf(address account) external view returns
(uint256);

https://data.chain.link/ethereum/mainnet/crypto-usd/eth-usd

40

 function allowance(address owner, address spender) external
view returns (uint256);

 function transfer(address recipient, uint256 amount)
external returns (bool);
 function approve(address spender, uint256 amount) external
returns (bool);
 function transferFrom(address sender, address recipient,
uint256 amount) external returns (bool);

 event Transfer(address indexed from, address indexed to,
uint256 value);
 event Approval(address indexed owner, address indexed
spender, uint256 value);
}

contract ERC20Basic is IERC20 {

 string public constant name = "ERC20Basic";
 string public constant symbol = "ERC";
 uint8 public constant decimals = 18;

 //event Approval(address indexed tokenOwner, address
indexed spender, uint tokens);
 //event Transfer(address indexed from, address indexed to,
uint tokens);

 mapping(address => uint256) balances;

 mapping(address => mapping (address => uint256)) allowed;

 uint256 totalSupply_;

 using SafeMath for uint256;

 constructor(uint256 total) public {
 totalSupply_ = total;
 balances[msg.sender] = totalSupply_;
 }

41

 function totalSupply() public override view returns
(uint256) {
 return totalSupply_;
 }

 function balanceOf(address tokenOwner) public override view
returns (uint256) {
 return balances[tokenOwner];
 }

 function transfer(address receiver, uint256 numTokens)
public override returns (bool) {
 require(numTokens <= balances[msg.sender]);
 balances[msg.sender] =
balances[msg.sender].sub(numTokens);
 balances[receiver] = balances[receiver].add(numTokens);
 emit Transfer(msg.sender, receiver, numTokens);
 return true;
 }

 function approve(address delegate, uint256 numTokens)
public override returns (bool) {
 allowed[msg.sender][delegate] = numTokens;
 emit Approval(msg.sender, delegate, numTokens);
 return true;
 }

 function allowance(address owner, address delegate) public
override view returns (uint) {
 return allowed[owner][delegate];
 }

 function transferFrom(address owner, address buyer, uint256
numTokens) public override returns (bool) {
 require(numTokens <= balances[owner]);
 require(numTokens <= allowed[owner][msg.sender]);

 balances[owner] = balances[owner].sub(numTokens);
 allowed[owner][msg.sender] =
allowed[owner][msg.sender].sub(numTokens);
 balances[buyer] = balances[buyer].add(numTokens);
 emit Transfer(owner, buyer, numTokens);
 return true;
 }
}

42

library SafeMath {
 function sub(uint256 a, uint256 b) internal pure returns
(uint256) {
 assert(b <= a);
 return a - b;
 }

 function add(uint256 a, uint256 b) internal pure returns
(uint256) {
 uint256 c = a + b;
 assert(c >= a);
 return c;
 }
}

2.​ Create a deploy script for the new contract in your deploy folder. Call it deploy_erc20.py.

If you already created this in the last session's bonus exercises, you can skip this step.
This script will deploy your ERC-20 token.

from brownie import ERC20Basic, config, accounts

def deployContract():
 account = accounts.add(config["wallets"]["from_key"])
 ERC20Basic.deploy(100000000,{'from': account})

def main():
 deployContract()

3.​ Create a script to interact with your deployed ERC20 contract. Call it interact_erc20.py.

This script will call a function to check to see what the total supply of the token is.

from brownie import ERC20Basic, config, accounts, network

def main():
 account = accounts.add(config["wallets"]["from_key"])
 erc20 = ERC20Basic[-1]
 print("Total Supply is", erc20.totalSupply())

43

4.​ Deploy your new contract to your local network, then run the interact script to see the
result

brownie run scripts/deploy_erc20.py

brownie run scripts/interact_erc20.py

5.​ Modify your interact script to call other functions in the ERC-20 contract, such as to
Transfer funds (transfer function) from your current wallet address to another one that
you own on the local Ganache instance. Remember you can run ‘ganache-cli’ at the
terminal to see all of the wallet addresses you control, and send tokens from your main
(first) account, to another one such as your second account. You can stop your Ganache
instance from running by typing CTRL + C in the terminal that’s running Ganache.

Exercise 4: Testing Smart Contracts
In this exercise, you’ll execute the tests that come with the Brownie Starter Kit, do a Solidity
Coverage test and then check in the project to a public repository on GitHub!

Executing the Unit Tests

1.​ First thing you need to do is to change the default network back to the local development
network in the brownie-config.yaml file

44

networks:
 default: development

2.​ Now you're going to execute the unit tests. These will run a few basic tests against the
smart contracts, and use mocks to simulate connecting to an external oracle network.
Run the following command in the console to execute the unit tests​

brownie test

You should see all unit tests pass successfully.

3.​ Now lets execute the tests again, but this time on a fork of the Ethereum mainnet. To run
them again on a forked network, execute the following command

brownie test --network mainnet-fork

Next you’ll run the tests on the public Kovan test network to test the actual integration of
our smart contracts to the Chainlink Oracle network.

45

Executing the Integration Tests

You can now execute the integration tests on the Kovan network by running the following
command. The integration tests may take a couple minutes to complete.

brownie test --network kovan

Checking the Solidity Coverage

The last step in your testing is to check what the Solidity coverage is in your tests.

1.​ To check your unit tests coverage, execute the following command

brownie test --coverage

46

A report should be displayed, showing how much of the code is being tested in your
tests (see the percentages in yellow). You can view the test coverage data in the
brownie gui

brownie gui

You can see the report for each contract there

47

Congratulations, you’ve learned how to execute unit tests on a local ganache network as well as
a forked local network, how to execute integration tests on a public network, and how to check
the coverage of your unit tests. Now the last step is checking your project into a public GitHub
repository so you can share it with the world!

Checking in your Project

Perform the following steps to check in your brownie project into a public repository for
everyone else to see your work

1.​ Head over to https://github.com/ and sign-in, or create a new free account if you
don’t have one already.
Click on your profile on the top-right corner, and goto Settings -> Developer
Settings -> Personal access tokens

https://github.com/

48

2.​ Generate a personal access token as per the GitHub instructions

https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token

49

3.​ Create a new repository on GitHub. Call it ‘dev-bootcamp-brownie’, and leave the
visibility as ‘public’. To avoid errors, do not initialize the new repository with
README, license, or gitignore files. Once you get to the ‘setup page’, leave it
open, you will come back to it soon.

4.​ Go back to your VS Code terminal for your project.

5.​ Initialize the local directory as a Git repository.

git init -b master

6.​ Add the files in your new local repository. This stages them for the first commit.

50

git add .

7.​ Next we want to remove the existing remote link to the Brownie Starter Kit

repository on GitHub

git remote rm origin

8.​ Commit the files that you've staged in your local repository.

git commit -m "Developer Bootcamp".

9.​ Go back to GitHub. At the top of your GitHub repository's Quick Setup page, click
the copy button to copy the remote repository URL.

10.​Back in VS code terminal, you need to add the URL for the remote repository
where your local repository will be pushed. Enter in the command below, and
replace the <PASTE_REMOTE_URL> with the value you copied above. If
prompted for GitHub authentication details, use your email that you signed up to
GitHub with, and your personal access token that you generated earlier as the
password. If you don’t get prompted, you can continue.

git remote add origin <PASTE_REMOTE_URL>

11.​Verify the new remote URL with the following command. You should see it now
pointing to your GitHub repository. This means when we push code, we will be
pushing it to your GitHub repository.

git remote -v

51

12.​Push the changes in your local repository up to GitHub. If prompted for GitHub
authentication details, use your email that you signed up to GitHub with, and your
personal access token that you generated earlier as the password. This will give
your local git program access to push code up to your GitHub account.

git push -u origin master

Your repository should now be live on GitHub! If you still have GitHub open with your new
repository, then you can just refresh the page. Otherwise, head to GitHub, then in the top right
corner open the menu and choose ‘your repositories’, then click on the URL link to your project
to open it up and see. Take note of the URL and share it in the Bootcamp chat to share your
completed project with everyone, or share it on Twitter with the hashtag
#chainlink-dev-bootcamp, or in the #developer-bootcamp channel in the Chainlink Discord!

https://github.com/

52

If you’ve made it this far, congratulations, you’ve completed the Summer 2021 Smart Contract
Developer Bootcamp!

If you finished early, you can edit the README file and modify the text to something more
appropriate. You can do this directly in GitHub by pressing on the edit icon, then modifying the
file and saving your changes. You can also edit the project about/description directly in GitHub

Bonus Exercise:
You can attempt to complete these exercises if you’ve completed the main exercise ahead of
schedule. You can refer to previous exercise steps for a guide, or to use code as a template.

53

1.​ Create a new brownie project in a new folder, call it anything you like
2.​ Create a new smart contract inside a contracts folder. You can paste in a completed

example, or come up with one on your own. You can even create one in Remix, then
paste it into a new contract file in your brownie project once you are happy with it

3.​ Create a deployment script for your new contract, deploy your contract to Kovan and a
local ganache instance

4.​ Create a unit test for your new contract, and execute it (hint: syntax is brownie test)
5.​ Check your new project into a new repository on GitHub

Appendix: Troubleshooting

Installing Pipx and Brownie

If you’re using macOS and you get an error similar to this: ‘invalid active developer path
(/Library/Developer/CommandLineTools), missing xcrun at:
/Library/Developer/CommandLineTools/usr/bin/xcrun’, run the following command to
download and install the apple developer command line tools, then re-open your
terminal window and try the command again

xcode-select --install

If you still get errors, you can try install using pip instead of pipx

pip install eth-brownie

Windows Users:

If while installing pipx you get an error stating that ‘pipx is not recognized as an internal
or external command’, ensure you’re running VS Code or the terminal as administrator.

If you are following the setup instructions, try restarting windows after the ‘python3 -m
pipx ensurepath’ command, before trying to install brownie

https://chain.link/bootcamp/brownie-setup-instructions

54

If you are able to successfully install brownie, but then get an error similar to the
following: ‘brownie' is not recognized as an internal or external command...", try the
following:

1.​ Install pipx

python3 -m pipx install --user pipx

2.​ Add "C:\Users\<replace-with-logged-on-userid>\ .local\bin" to your PATH

windows system environment variable.​

3.​ Try installing eth-brownie again, using pipx

pipx install eth-brownie

If that doesn’t work, try adding your Python scripts folder to your PATH environment
variable in windows. Eg

C:\Users\owner\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.9

_qbz5n2kfra8p0\LocalCache\local-packages\Python39\Scripts

Then try reinstall brownie

Running Scripts

If you get an error specific to an environment variable such as WEB3_INFURA_PROJECT_ID
or PRIVATE_KEY, try manually exporting them in your terminal, then try again. Ie copy the lines
in your .env, and paste them in your terminal to run them as commands. Then try your
command again

export WEB3_INFURA_PROJECT_ID='abcdef'

export PRIVATE_KEY='123456'

​
If you still can’t get it working, if you’re using windows, try adding the variable to your windows
environment variables (in system settings), then try again

https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/
https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/

	
	
	
	Smart Contract Developer Bootcamp Weekend Track: Day 2 Exercises: Brownie
	Software Installation
	Exercise 1: My First Brownie Project
	Setting Up Brownie
	
	Creating The Smart Contract
	Deploying and Interacting With the Smart Contract
	Bonus Exercises:

	
	Exercise 2: Brownie Starter Kit
	Downloading the Brownie Starter Kit
	Setting Up The Brownie Starter Kit
	Compiling and Deploying The Smart Contracts
	
	Price Feed Contract
	API Consumer Contract
	VRF Consumer Contract

	Bonus Exercises:

	
	
	Exercise 3: Deploying to a Local Network
	Viewing Your Networks
	Setting up the Local Development Ganache Network
	Deploying and Interacting With the Smart Contracts
	Price Feeds Consumer Contract

	Forking Ethereum Mainnet
	Bonus Exercises:

	Exercise 4: Testing Smart Contracts
	Executing the Unit Tests
	Executing the Integration Tests
	Checking the Solidity Coverage
	Checking in your Project
	Bonus Exercise:

	
	Appendix: Troubleshooting
	Installing Pipx and Brownie
	Running Scripts

