Name	Reads as	Logic Gate	OCR Notation	Alternative Notation	Examples	Truth table	Notes
Conjunction	AND		^	AND e.g. A AND B	Both operators in a submarine need to turn their launch keys at the same time for a missile to fire.	A B Output 0 0 0 0 1 0 1 0 0 1 1 1	Adding a circle to the end of an AND gate turns it into a NAND gate (Not AND). It simply reverses the output from the gate.
Disjunction	OR		\ \	OR e.g A OR B + e.g A+B	The fire alarm will go off if the smoke detector senses the temperature rises to high or if it senses smoke or both.	A B Output 0 0 0 0 1 1 1 0 1 1 1 1	Adding a circle to the end of an OR gate turns it into a NOR gate (Not OR). It simply reverses the output from the gate.
Exclusive Disjunction	XOR		\vee	XOR e.g A XOR B ⊕ e.g A B	Opposing football teams will get 3 points for a win if one side scores more, but not if they draw.	A B Output 0 0 0 0 1 1 1 0 1 1 1 0	Adding a circle to the end of an XOR gate turns it into a XNOR gate (Not XOR). It simply reverses the output from the gate.
Negation	NOT		-	bar e.g A ~ e.g ~A NOT e.g NOT A	A microwave will stop if the door is not closed. A house alarm will go off if the door is not closed.	A Output 1 0 0 1	
Equivalence	If and only if. Means the same as		Ξ		The decimal 0.25 is the same as the fraction ¼. The temperature 25 Celsius is the same as 77 Fahrenheit.		

Boolean Algebra Cheat Sheet

Rule	What does it mean?	In Boolean Algebra in the OCR exam	Examples in English	Notes
De Morgan's Law	Either logical function AND or OR may be replaced by the other, given certain changes to the equation.	$\neg (A \lor B) \equiv (\neg A) \land (\neg B)$ NOT $(A OR B)$ is the same as $(NOT A) AND (NOT B)$ This is the same as: $\neg (A \land B) \equiv (\neg A) \lor (\neg B)$ NOT $(A AND B)$ is the same as $(NOT A) OR (NOT B)$	It cannot be both winter AND summer (at any point in time) Is the same as (At any point in time) It is NOT winter OR it is NOT summer	A A B B
Distribution	This law allows for the multiplying or factoring out of an expression.	This is the OR Distributive law: $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$ $A \land AND (B \land C)$ is the same as $(A \land AND B) \land C$ This is the AND Distributive law: $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$ $A \land C \land C \land C$	You can choose 1 main course and either a start or a desert. Is the same as You can choose 1 main and 1 starter or you can choose 1 main and 1 desert	
Association	This law allows for the removal of brackets from an expression and the regrouping of the variables.	This is the OR Association Law: $A\lor(B\lor C) \equiv (A\lor B)\lor C \equiv A\lor B\lor C$ A OR $(B$ OR $C)$ is the same as $(A$ OR $B)$ OR C is the same as A OR B OR $CThis is the AND Association Law:A\lor(B\land C) \equiv (A\land B)\land C \equiv A\land B\land CA$ AND $(B$ AND $C)$ is the same as $(A$ AND $B)$ AND C is the same as $(A$ AND C	"Craig and his friends James & Tom are coming to the party" Is the same as "James & Tom and their friend Craig are coming to the party" Is the same as "Craig, James and Tom are coming to the party"	
Commutation	The order of application of two separate terms is not important.	$A \land B \equiv B \land A$ The order in which two variables are AND 'ed makes no difference $A \lor B \equiv B \lor A$ The order in which two variables are OR 'ed makes no difference	Tom and Jane are going shopping. Is the same as Jane and Tom are going shopping	
Double negation	NOT NOT A (double negative) = "A"	¬(¬ A) = A	"It's not as if I don't like you" clearly means "I do like you"!	
Absorption	Where the rule applies the second term inside the bracket can always be eliminated and "absorbed" by the term outside the bracket.	$XV(X \land Y) \equiv X$ $X \circ R(X \land AND Y)$ is the same as X $X \land (X \lor Y) \equiv X$ $X \land AND (X \circ R Y)$ is the same as X	If it will rain, then I will wear my coat. Therefore, if it will rain then it will rain and I will wear my coat.	 To be able to apply the Absorption rule: The operators inside and outside the brackets must be different The term outside the brackets must also be inside the brackets

In addition to the 5 laws / rules above which are listed in the OCR specification and the Absorption rule there are also 8 general identities or "rules" which you really should know which will help you gratefully when it comes to simplifying Boolean Expressions.

	Rule	Explanation		Rule	Explanation
	AND rules	Remember that with AND both terms have to be 1 or TRUE for the result to be TRUE		OR rules	Remember that with OR only 1 term has to be 1 or TRUE for the result to be TRUE
1	X	X AND 0 is the same as 0 Or to put it another way X AND FALSE has to equal FALSE (See truth table on reverse side for proof)	5	X ∨ 0 = X	X OR 0 is the same as X Or to put it another way X OR FALSE has to equal TRUE (See truth table on reverse side for proof)
2	X 1 = X	X AND 1 is the same as X Or to put it another way X AND TRUE has to equal TRUE (See truth table on reverse side for proof)	6	X V 1 = X	X OR 1 is the same as X Or to put it another way X OR TRUE has to equal TRUE (See truth table on reverse side for proof)
3	X ∧ X = X	X AND X is the same as X Or to put it another way X AND X has to equal X (See truth table on reverse side for proof)	7	X ∨ X = X	X OR X is the same as X Or to put it another way X OR X has to equal X (See truth table on reverse side for proof)
4	X∧ ¬X = 0	X AND not X is the same as 0 Or to put it another way X AND NOT(X) has to equal FALSE (See truth table on reverse side for proof)	8	X ∨ ¬X = 1	X OR not X is the same as 1 Or to put it another way X OR NOT(X) has to equal TRUE (See truth table on reverse side for proof)

Boolean Algebra Cheat Sheet

