I
£
.___M

lceberg supports full-text and vector
iIndexing solutions

Background

With the development of LLM technology, Data lakes are increasingly being used in Machine
Learning scenarios such as Model Training and feature storage. The processing
requirements for data in ML scenarios are diverse, including batch scanning, vector retrieval,
or full-text retrieval. Users hope that one copy of data can meet both of these requirements
to simplify the data processing chain and reduce storage costs. Therefore, we need to build
full-text and vector retrieval capabilities on the data lake to support the processing
requirements of MultiModal Machine Learning in ML scenarios.

Currently, there are some open source projects in the industry, such as lancedb, that support
the ability to scan, full-text, and vector indexing on a dataset, which has received increasing
attention. We hope to introduce full-text and vector retrieval support on Iceberg to make up
for Iceberg's shortcomings in MultiModal data processing and further expand Iceberg's
usage scenarios.

Design goals

Based on open-source full-text search and vector search libraries, Iceberg's full-text search
and vector indexing capabilities mainly include the following functions:

e Index building: Build full-text index and vector index on top of Iceberg based on spark
or flink.

e Spark index query: spark sql query utilizes index information to accelerate query
performance, achieving full-text and vector retrieval query capabilities on top of
Iceberg.

e Other analysis engines support: abstract index query interface, support docking with
other query engines, such as Presto, Starrocks, etc.

Scheme design

Overall architecture

The overall architecture is shown in the following figure. We will use Lucene as the library for
full-text and vector retrieval. Lucence is a high-performance full-text retrieval library based on
Java language, and also supports vector

https://lancedb.com/

spark query: select id, content, score() from t where match_any(content, 'iceberg') order by score() limit 10

Spark
Spark Task0 Spark Taskl

match_any(content, 'iceberg') limit 10 | match_any(content, 'iceberg') limit 10
IndexReader.read() %

IndexWriter.write() query

Spark data file index data file ks Presto/
P Starrocks/..

f0.parquet f0.index fl.parquet fl.index

iceberg data

indexing capabilities. It is currently widely used in the search field. We will also build full-text
and vector retrieval capabilities based on this library.

For the query phase, Spark SQL pushes the search conditions and limit values down to the
scan task node. The scan task queries the row_id (line number) list of matching records in
the index file through the push-down conditions, and then queries the corresponding records
in the corresponding parquet file through row_id. Other analysis engines such as
presto/starrocks have similar query processes.

The specific details of the plan are as follows:

Index building

DDL syntax

The syntax is shown below, which supports building indexes and adding indexes to existing
data when creating tables.

1

2 CREATE TABLE t0O (

3 id bigint,

4 cl string,

B c2 string,

6 c3 array<float>,

7 INDEX c3 USING VECTOR with (ann.algo = 'hsnw')
8) using dceberg;

9

10

11 ALTER TABLE t1

d.2 ADD INDEX text_-idx(text INVERTED);

Index layout

Index files correspond one-to-one with data files. A data file corresponds to an index
instance of Lucence. The index file name has the same prefix as the data file, which helps
us quickly find the corresponding index file through the data file. The advantage of doing this
is to simplify the version management of the index file. The version of the index file evolves
with the data file. When a new snapshot of the data file is generated, a corresponding index
file will also be generated.

Index write

During the data writing phase, index fields and row_id (line numbers) are written to lucence
through the lucence IndexWriter interface.

1

2 FSDirectory directory = FSDirectory.open(Paths.get("index_directory"));

3 IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer());
4 IndexWriter indexWriter = new IndexWriter(directory, config);

5

6

7 Document doc = new Document();

8 doc.add(new TextField("row_id", 0OL);

9 doc.add(new TextField("content", "This is a book about Lucene.", Field.Store.YES));
10 writer.addDocument(doc);

11

12

13 writer.commit();

14 writer.close();

First write the index data to the local disk, and then upload it to the HDFS directory.

Index query

Query statement

The score () function represents the full-text index score or vector retrieval relevance
distance.

1 select id, content, score() from t

2 where match_any(content, 'iceberg') order by score() limit 10

Query process

e Spark Driver or starrocks FE node calls planTask () to generate an execution task list,
and pushes the query to the scan task node under the push-down condition, and
schedules it to the Executor node for execution.

e The Executor node receives the ScanTask task. First, it uses lucence to query the list
of row IDs and score values corresponding to the search conditions in the index file.
Then, it searches for the corresponding records in the data file using the row IDs.
The implementation of Pseudocode is as follows:

1 IndexReader indexReader = new IndexReader(...);
2 ScoreDoc[] scoreDocs = indexReader.search(query, limit);
3 List<Long> rowIds = new ArraylList();

4 for (ScoreDoc doc: scoreDocs) {

5 int docId = scoreDoc.doc;

6 Document doc = searcher.doc(docId);

7 long rowId = doc.get("row_id");

8 rowIds.add(rowId):

9 1}

10

11 ParquetReader reader = new ParquetReader(...);
12 List<Row> rows = reader.readRows (rowIds);

We need to provide an interface for reading by line number on top of Parquet reader,
which can use Parquet's page index indexing capability to accelerate the lookup
performance.

e The GlobalSort operator receives the < row, score > list returned by each Task,
summarizes the global TopN row list by score, and returns it to the Driver.

Read Index from Hdfs

Query needs to support direct reading of index data on HDFS. Lucence provides a Directory
interface to abstract 1O operations. We can implement Hdfs Directory to achieve the ability to
read indexes on HDFS.

public class HdfsDirectory +implements Directory {

public abstract long fileLength(String name) throws IOException {
}

public abstract IndexInput openInput(String name, IOContext context)
throws IOException {
1

w o ~N O U A~ W N B

Object storage such as S3 can also be achieved by implementing corresponding directories.

https://parquet.apache.org/docs/file-format/pageindex/

Other matters

When rewriting or cleaning up a data file, it is necessary to synchronously rewrite or clean up
the corresponding index file.

Implementation plan

e Step 1: Complete the Spark index building function, including syntax extension and
index building function development.

e Step 2: Complete the development of Spark query index function, including index
interface encapsulation, parquet reader support for searching by row number, etc.
Step 3: Data file Rewrite and clean up support the processing of index files.

Step 4: Connect to the presto connector to implement presto lookup iceberg index.

	标签页 1
	
	Iceberg supports full-text and vector indexing solutions
	Background
	Design goals
	Scheme design
	Overall architecture
	Index building
	DDL syntax

	
	Index layout
	Index write
	Index query
	Query statement
	Query process
	Read Index from Hdfs

	Other matters

	Implementation plan

