
Spring 2023

[EC2202] Data Structures

Midterm: 1 pm, Tuesday, Apr. 18

INSTRUCTIONS
●​ Do not open your exam sheet until directed to do so, otherwise you would be

considered cheating.
●​ You have 1 hour and 50 minutes to complete the exam (7 problems; maximum

of 100 points).
●​ The exam is closed book, closed notes, closed computer, and closed calculator.
●​ Mark your answers on the exam sheet itself and be sure to write your answers

in the space (boxes) provided. We will not consider the answers given outside
the boxes (use other space for brainstorming).

POLICIES & CLARIFICATIONS
●​ If you need to use the restroom, bring your exam sheet to the back of the room.

Only one person is allowed at a time.
●​ You may use built-in Python functions that do not require import, such as min,

max, pow, len, and abs.
●​ For What Would Python Print (WWPP) problems, write the results that would

show up in the Colab environment.
●​ For coding problems, we will ignore minor grammar mistakes for evaluation

(focus on the logic and flow). Moreover, your code must be indented correctly.
●​ Use English for your answers and name.

Student ID Number Name

Q1. (15 points) What Would Python Print (WWPP)
For the code blocks given on the left, write what Python would print in the box on the right. For your answers,
include all the resulting print outputs in the correct sequential order. Assume that you are running the
code blocks in the Colab environment.

(a) (3 points)

def func_1():​
 print("EC2202")​
 return 1​
​
def func_2():​
 print("I love GIST")​
​
print(func_1(), func_2())

(b) (3 points)

higher_order = lambda f: lambda x: f(x)​
g = lambda x: x * x​
print(higher_order(2)(g))

(c) (3 points)

print(0 or len or True)​
print(-1 and True and 2 and 1 / 0)

(d) (3 points)

lst = [5, 6, 7, 8]
lst += list(range(7, 11))
lst.pop(7)
lst.pop(6)
print(lst)

(e) (3 points)

z = [[1, 2, 3, 4], [5, 6, 7, 8], \
 [9, 10, 11, 12]]​
print([x for y in z if sum(y) > 10 \
 for x in y if x < 10])

EC2202
I love GIST
1 None

TypeError

<built-in function len>
ZeroDivisionError

[5, 6, 7, 8, 7, 8]

[5, 6, 7, 8, 9]

1

Q2. (10 points) Functions
(a) (5 points) Implement the following function that checks if a given string is a palindrome. A palindrome is a
string that remains identical when reversed. For one line (Pythonic) implementations, 5 points will be given
and correct implementations using more than one line will receive 3 points.

def is_palindrome(strings):​
 '''​
 >>> is_palindrome("tenet")​
 True​
 >>> is_palindrome("tenets")​
 False​
 >>> is_palindrome("raincar")​
 False​
 >>> is_palindrome("")​
 True​
 >>> is_palindrome("a")​
 True​
 >>> is_palindrome("ab")​
 False​
 '''

 # single line implementation​
 return strings == strings[::-1]​
​
 # multi-line implementation​
 for i in range(0, int(len(strings)/2)):​
 if strings[i] != str[len(strings)-i-1]:​
 return False​
 return True

2

(b) (5 points) Implement the below function which takes in a number n and a sequence of digits seq. The
function returns whether n contains seq as a subsequence, which does not have to be consecutive. For
example, `141` contains the sequence `11` because the first digit of the sequence, `1`, is the first digit of `141`,
and the next digit of the sequence, `1`, is found later in `141`.

def has_subseq(n, seq):​
 '''​
 >>> has_subseq(123, 12)​
 True​
 >>> has_subseq(141, 11)​
 True​
 >>> has_subseq(144, 12)​
 False​
 >>> has_subseq(144, 1441)​
 False​
 >>> has_subseq(1343412, 134)​
 True​
 '''

 if n == seq:​
 return True​
 if n < seq:​
 return False​
 without = has_subseq(n // 10, seq)​
 if seq % 10 == n % 10:​
 return has_subseq(n // 10, seq // 10) or without​
 return without

3

Q3. (10 points) Clockwise Tower of Hanoi
Consider the following variant of the towers of Hanoi problem. As usual, we are given three pegs A, B, C. At
the start, there are disks on peg A. The problem is to move them all to peg B. However, this time a disk can
only move clockwise: from peg A to B, from peg B to C, or from peg C to A. All other moves are not
allowed. For instance, it is not allowed to move a disk directly from peg A to peg C. Of course all the other
rules are still valid: You can only move the top disk on each pole, and a disk is not allowed to lie on top of a
smaller disk.

def hanoi_clockwise(n, source, destination, spare):​
 '''prints the order of moving disks​
 >>> hanoi_clockwise(2, 'A', 'B', 'C')​
 Move disk 1 from A to B​
 Move disk 1 from B to C​
 Move disk 2 from A to B​
 Move disk 1 from C to A​
 Move disk 1 from A to B​
 '''​
 if n == 1:​
 print("Move disk 1 from %s to %s" % (source, destination))​
 else:​
 # implement this part

 hanoi_cw(n-1, source, destination, spare)​
 hanoi_cw(n-1, destination, spare, source)​
 print("Move disk %d from %s to %s" % (n, source, destination))​
 hanoi_cw(n-1, spare, source, destination)​
 hanoi_cw(n-1, source, destination, spare)

4

Q4. (10 points) Algorithm Analysis
(a) (5 points) For the group of functions below, sort the functions in increasing order of asymptotic (big-Θ)
complexity.

 𝑓
1
(𝑛) = 𝑛𝑛+4 + 𝑛!

 𝑓
2
(𝑛) = 𝑛7 𝑛

 𝑓
3
(𝑛) = 43𝑛 𝑙𝑜𝑔 𝑛

 𝑓
4
(𝑛) = 𝑛12 + 1/𝑛

 𝑓
5
(𝑛) = 7𝑛2

Answer: 4 -> 2 -> 1 -> 3 -> 5

Take the logarithms of the functions: , , , and . For f1 Θ(𝑛 𝑙𝑜𝑔 𝑛) Θ(𝑛 𝑙𝑜𝑔 𝑛) Θ(𝑛 𝑙𝑜𝑔 𝑛) Θ(𝑙𝑜𝑔 𝑛) Θ(𝑛2)

and f3, . Therefore, f3 is bigger than f1. 𝑓
3

= (4𝑙𝑜𝑔 𝑛)3𝑛 = (𝑛𝑙𝑜𝑔 4)3𝑛 = 𝑛6𝑛

(b) (5 points) Evaluate the runtime bound in Θ for the code below. Assume the number of elements in arr is N
and the deepcopy method takes Θ(M) time, where M is the number of elements copied.asaZZZham

import copy​
​
def silly(arr):​
 if len(arr) <= 1:​
 print("You won!")​
 return​
 ​
 new_len = len(arr) // 2​
 first_half = copy.deepcopy(arr[:new_len])​
 second_half = copy.deepcopy(arr[new_len:])​
 silly(first_half)​
 silly(second_half)

 Θ(𝑛 𝑙𝑜𝑔 𝑛)

5

Q5. (20 points) Arrays and Strings
(a) (5 points) Implement the function max_sub_sum_linear that finds the maximum subsequence sum in
linear time. Implementations that require more than O(N) complexity will not receive a point.

def max_sub_sum_linear(seq):​
 '''​
 Find the maximum subsequence sum in linear time!​
 >>> max_sub_sum_linear([-2, -3, 4, -1, -2, 1, 5, -3])​
 7​
 >>> max_sub_sum_linear([4, -3, 5, -2, -1, 2, 6, -2])​
 11​
 >>> max_sub_sum_linear([1, -1, 2, -2, 3, -3, 4, -4])​
 4​
 >>> max_sub_sum_linear([3, 5, 7, 10, -26, 30])​
 30​
 >>> max_sub_sum_linear([-1])​
 -1​
 '''

 seq_len = len(seq)​
 max_so_far = seq[0]​
 curr_max = seq[0]​
 for i in range(1, seq_len):​
 curr_max = max(seq[i], curr_max + seq[i])​
 max_so_far = max(max_so_far, curr_max)​
 return max_so_far

6

(b) (15 points) Given an N x N 2D matrix mat representing an image, rotate_matrix rotates the image by
90 degrees (anti-clockwise). You need to do this in place. Note that you should not create an additional array.

Function to print the matrix​
def print_matrix(mat, size):​
 for i in range(0, size):​
 for j in range(0, size):​
 print (mat[i][j], end = ' ')​
 print ("")​
​
You just need to implement this function​
def rotate_matrix(mat, size):​
 '''​
 >>> mat = [[1, 2, 3],​
 ... [4, 5, 6],​
 ... [7, 8, 9]]​
 >>> rotate_matrix(mat, 3)​
 >>> print_matrix(mat, 3)​
 3 6 9​
 2 5 8​
 1 4 7​
 >>> mat = [[1, 2],​
 ... [4, 5]]​
 >>> rotate_matrix(mat, 2)​
 >>> print_matrix(mat, 2)​
 2 5​
 1 4

 '''

 for x in range(0, int(size / 2)): ​
 # Consider elements in group of 4 in current square​
 for y in range(x, size-x-1): ​
 # store current cell in temp variable​
 temp = mat[x][y]​
​
 # move values from right to top​
 mat[x][y] = mat[y][size-1-x]​
​
 # move values from bottom to right​
 mat[y][size-1-x] = mat[size-1-x][size-1-y]​
​
 # move values from left to bottom​
 mat[size-1-x][size-1-y] = mat[size-1-y][x]​
​
 # assign temp to left​
 mat[size-1-y][x] = temp

7

Q6. (20 points) Queues with a Single Sentinel
Complete the implementation of the Queue class using a single sentinel. A sentinel is a dummy node that
does not contain meaningful items; the sentinel makes the implementation clean by removing the necessity of
checking exceptional cases. The Queue starts with a single sentinel and becomes circular after a few
enqueue operations (the last node of the Queue points back to the sentinel node). Correct implementation of
each method is worth 5 points.

class Node:​
 def __init__(self, item, prev=None, next=None):​
 self.item = item​
 self.prev = prev​
 self.next = next​
​
class Queue:​
 '''​
 >>> q = Queue()​
 >>> q.is_empty()​
 True​
 >>> q.front()​
 'Q is empty!'​
 >>> q.enqueue(4)​
 >>> q.front()​
 4​
 >>> q.is_empty()​
 False​
 >>> q.enqueue(5)​
 >>> q.enqueue(6)​
 >>> q.enqueue(7)​
 >>> q.dequeue()​
 4​
 >>> q.front()​
 5​
 >>> print(q)​
 5 -> 6 -> 7​
 >>> q.dequeue()​
 5​
 >>> q.dequeue()​
 6​
 >>> q.dequeue()​
 7​
 >>> q.dequeue()​
 'Q is empty!'

 >>> q.is_empty()​
 True​
 '''​
 def __init__(self):​
 self.sentinel = Node(None)​
 self.sentinel.next = self.sentinel​
 self.sentinel.prev = self.sentinel​

8

 def __str__(self):

 result = []​
 temp = self.sentinel.next​
 while temp != self.sentinel:​
 result.append(str(temp.item))​
 temp = temp.next​
 return " -> ".join(result)

​
 def is_empty(self):

 return self.sentinel.next is self.sentinel

 def front(self):​
 if self.is_empty():​
 return "Q is empty!"​
 return self.sentinel.next.item​
​
 def dequeue(self):​
 if self.is_empty():​
 return "Q is empty!"

 item = self.sentinel.next.item​
 self.sentinel.next = self.sentinel.next.next​
 self.sentinel.next.next.prev = self.sentinel​
 return item

 ​
 def enqueue(self, x):

 temp = Node(x)​
 temp.prev = self.sentinel.prev​
 temp.next = self.sentinel​

 self.sentinel.prev.next = temp​
 self.sentinel.prev = temp

9

Q7. (15 points) Binary Search
There is an integer array nums sorted in ascending order (with distinct values). Prior to being passed to
search, nums is possibly rotated at an unknown pivot index k (1 <= k < len(nums)) such that the resulting array
is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3 and become [4,5,6,7,0,1,2]. Given the array nums after the possible rotation
and an integer target, search returns the index of target if it is in nums, or -1 if it is not in nums. Moreover,
you should take the approach described below rather than what we’ve discussed in the lecture; complete the
implementation of Step 2. The expected runtime complexity is O(log N).

def search(nums, target):​
 '''​
 >>> search([4, 5, 6, 7, 0, 1, 2], 0)​
 4​
 >>> search([4, 5, 6, 7, 0, 1, 2], 3)​
 -1​
 >>> search([1], 0)​
 -1​
 '''​
 # Step 1: find the pivot using binary search (O(log N))​
 left, right = 0, len(nums) - 1​
 while left < right:​
 mid = left + (right - left) // 2​
 if nums[mid] > nums[right]:​
 left = mid + 1​
 else:​
 right = mid​
 pivot = left​
​
 # Step 2. binary search for finding the target (O(log N))

 left, right = 0, len(nums) - 1​
 while left <= right:​
 mid = left + (right - left) // 2​
 real_mid = (mid + pivot) % len(nums)​
 if nums[real_mid] < target:​
 left = mid + 1​
 elif nums[real_mid] > target:​
 right = mid - 1​
 else:​
 return real_mid​
 return -1

10

	Spring 2023
	[EC2202] Data Structures
	Midterm: 1 pm, Tuesday, Apr. 18
	INSTRUCTIONS
	POLICIES & CLARIFICATIONS
	Q1. (15 points) What Would Python Print (WWPP)
	Q2. (10 points) Functions
	Q3. (10 points) Clockwise Tower of Hanoi
	Q4. (10 points) Algorithm Analysis
	
	Q5. (20 points) Arrays and Strings
	Q6. (20 points) Queues with a Single Sentinel
	Q7. (15 points) Binary Search

