UNITV

Product Metrics: A Frame work for Product Metrics, Metrics for the
Requirements Model, Metrics for the Design Model, Metrics for Testing,
Metrics for Maintenance.

Estimation: Software Project Estimation, Decomposition Techniques,
Empirical Estimation Models, Specialized Estimation Techniques.

Software Configuration Management: Software Configuration
Management. Software Process Improvement: The SPI Process, The

CMML.

Product Metrics:

A Frame work for Product Metrics

SOFTWARE QUALITY

Software quality is defined as the conformance to explicitly stated
functional and performance requirements, explicitly documented
development standards, and implicit characteristics that are expected of all
professionally developed software

McCall’s Quality Factors: Factors that affect software quality can be categorized in

two broad groups:

FIGURE 19.1
WeCall's
software
guality foctors

Factors that can be directly measured (e.g. defects uncovered during testing)
Factors that can be measured only indirectly (e.g. usability or maintainability)

Maintainability Partability
Flaxibility Reusability
Tastability nteraperability

PRODUCT REVISION PRODUCT TRANSITION

PRODUCT OPERATION

Correciness Usability Efficiency
Rediability Intagrity

Figure 19.1; focus on three important aspects of a software product: its
operational characteristics, its ability to undergo change, and its adaptability to
new environments.

MccCall and his colleagues provide the following descriptions:

1. Correctness: The extent to which a program satisfies its specification and
fulfills the customer's mission objectives.

2. Reliability: The extent to which a program can be expected to perform its
intended function with required precision.

3. Efficiency: The amount of computing resources and code required by a
program to perform its function.

4. Integrity: Extent to which access to software or data by unauthorized
persons can be controlled.

5. Usability: Effort required to learn, operate, prepare input, and interpret
output of a program.

Maintainability: Effort required to locate and fix an error in a program.
Flexibility: Effort required to modify an operational program.

Testability: Effort required to test a program to ensure that it performs its
intended function.

9. Portability: Effort required to transfer the program from one hardware
and/or software system environment to another.

10. Reusability: Extent to which a program [or parts of a program] can be
reused in other applications related to the packaging and scope of the
functions that the program performs.

11. Interoperability: Effort required to couple one system to another.

ISO 9126 Quality Factors

The ISO 9126 standard was developed in an attempt to identify the key
quality attributes for computer software. The standard identifies six key
quality attributes:

1. Functionality: The degree to which the software satisfies stated needs as
indicated by the following sub attributes: suitability, accuracy, interoperability,
compliance, and security.

2. Reliability: The amount of time that the software is available for use as
indicated by the following sub attributes: maturity, fault tolerance,
recoverability.

3. Usability: The degree to which the software is easy to use as indicated by the
following sub attributes: understandability, learnability, operability.

4. Efficiency: The degree to which the software makes optimal use of system
resources as indicated by the following sub attributes: time behavior, resource
behavior.

5. Maintainability: The ease with which repair may be made to the software as

indicated by the following sub attributes: analyzability, changeability, stability,
testability.

6. Portability: The ease with which the software can be transposed from one
environment to another as indicated by the following sub attributes:
adaptability, installability, conformance, replaceability.

Measures, Metrics and Indicators

m A measure provides a quantitative indication of the extent, amount,
dimension, capacity, or size of some attribute of a product or process

m The IEEE glossary defines a metric as “a quantitative measure of the
degree to which a system, component, or process possesses a given
attribute.”

m An indicator is a metric or combination of metrics that provide insight into
the software process, a software project, or the product itself

METRICS FOR ANALYSIS MODEL

These metrics examine the analysis model with the intent of predicting the
“size” of the resultant system. Size is an indicator of design complexity and
is almost always an indicator of increased coding, integration and testing
effort.

Function-Based Metrics: The function-point metric can be used effectively

as a means for measuring the functionality delivered by the system. Using
historical data FP metric can be used to:
1) Estimate cost or effort required to design code and test the software.
2) Predict number of errors that will be encountered during testing
3) Forecast number of components and number of projected source lines in the
implemented system. Function points are derived using an empirical relationship
based on countable measures of software information domain.
Number of External inputs (EI): Each external input originates from a user
or is transmitted from another application. Inputs are often used to update
Internal Logic Files.
Number of External Outputs: Each external output is derived data within
the application that provides information to the user. External outputs refer to

I'CpOI'tS, screens, €rror messages

Number of external inquiries: An external inquiry is defined as an online

input that results in generation of some intermediate software response in

form of an online output

Number of internal logical files: Each internal logical file is a logical
grouping of data that resides within the applications boundary and is
maintained via external inputs.

Number of external interface files: Each external interface file is a logical

grouping of data that resides external to application but provides information

FIGURE 19.3
P::u'._-::t thea o Sansars
analysis model Test sansor
for SofeHome Passward
softwaore .
Zana inauir Zone setfing
inquiry - SafaHome "
Sansar inguir \essages
Ul sar neury | user
Panic buttan r..[rer-:-.c'u:-n Ilsar
- unction 3 heh
Activate /deactivate srear simius
‘*-.1 Activate deactivate
Alarm i
Password, sensors | . . alert Menitering
& response
subsystem
System configuration data I
that may be of use to application
Weighting Factor
Measurement parameter Count Simple Average Complex

Mumber of user inputs
Mumber of user outputs
Mumber of user inquiries
Number of files

Mumber of extarnal interfaces

® @ 4 &

7 =

FOGELE
e
LLLELE

Caunt tota L 50

FIGURE 19.4 Computing functicn points for a ScieHome functicn

Three user inputs—password, panic button, and activate/deactivate—are
shown in the figure along with two inquires—zone inquiry and sensor
inquiry. One file (system configuration file) is shown. Two user outputs
(messages and sensor status) and four external interfaces (test sensor, zone
setting, activate/deactivate, and alarm alert) are also present. These data,
along with the appropriate complexity, are shown in Figure 19.4. The count
total shown in Figure 19.4 must be adjusted using Equation

FP = count total * [0.65 +
0.01*> (Fi)]

where count total is the sum of all FP entries obtained from Figure 19.3 and

Fi (i = Ito 14) are "complexity adjustment values." For the purposes of this
example, we assume that (3 Fi) is 46 (a moderately complex product).
Therefore,

FP = 50 * [0.65 + 0.01
*46] = 56

Metrics For Specification Of Quality

List of characteristics that can be used to assess the quality of the analysis
model and the corresponding requirements specification: specificity (lack of
ambiguity), completeness, correctness, understandability, verifiability,
internal and external consistency, achievability, concision, traceability,
modifiability, precision, and reusability.

We assume that there are Nr requirements in a specification, such that

.i‘Ir = .il.ullr'_ .il.nlll"-
Where nf is the number of functional requirements and Nnf is the number of
non-functional (e.g., performance) requirements.

To determine the specificity (lack of ambiguity) of requirements

is the number of requirements for which all reviewers had identical
interpretations. The closer the value of Q to 1, the lower is the ambiguity of
the specification.

The completeness of functional requirements can be determined by
computing the ratio

Qs = Ny [Ny ¥ ngl

is the number of unique function reqtfirements, , is the number of inputs

(stimuli) defined or implied by the specification, and ns is the number of
states specified. The Q2 ratio measures the percentage of necessary functions
that have been specified for a system

METRICS FOR DESIGN
MODEL

Architectural Design Metrics: Architectural design metrics focus on

characteristics of the program architecture. These metrics are black box in
the sense that they do not require any knowledge of the inner workings of a
particular software component.

Card and Glass define three software design complexity measures: Structural
complexity, Data complexity, and System complexity.

Structural complexity of a module i is defined in the following manner:

S(i) = f2out(i)

where fout(i) is the fan-out of module i.(Fan-out means number of modules
directly sub-ordinate to module 1)

Data complexity provides an indication of the complexity in the internal
interface for a module 1 and is defined as

D(i) = v(i)/[fout(i) +1]

where v(i) is the number of input and output variables that are passed to and
from module i.

System complexity is defined as the sum of structural and data complexity,
specified as

C(i) = S(i) + D(i)

As each of these complexity values increases, the overall architectural
complexity of the system also increases. This leads to a greater
likelihood that integration and testing effort will also increase.

Morphology (shape) metrics: It is a function of the number of modules and the
number of interfaces between modules size=n+a

where n is the number of nodes and a is the number of arcs.

~ Widih -

FIGURE 19.5 Morphology metrics

For the architecture shown in Figure 19.5,

size=17+18 =35

depth = the longest path from the root (top) node to a leaf node. For the
architecture shown in Figure 19.5, depth = 4.

width = maximum number of nodes at any one level of the architecture.

For the architecture shown in Figure 19.5, width = 6.arc-to-node ratio, r =
a/m, r=18/17 = 1.06.

DSQI (Design Structure Quality Index): US air force has designed the DSQI.
Compute s1 to s7 from data and architectural design

S1: Total number of modules

S2: Number of modules whose correct function depends on the data input
S3: Number of modules whose function depends on prior processing

S4: Number of data base items

S5: Number of unique database items

S6: Number of database segments

S7: Number of modules with single entry and exit

Calculate D1 to D6 from s1 to s7 as follows:

DI1=1 if standard design is followed otherwise D1=0
D2(module independence)=(1-(s2/s1))

D3(module not depending on prior processing)=(1-(s3/s1))
D4(Data base size)=(1-(s5/s4))

D5(Database compartmentalization)=(1-(s6/s4)
D6(Module entry/exit characteristics)=(1-(s7/s1))

DSQI=Y WiDi

where 1 = 1 to 6, wi is the relative weighting of the importance of each of the
intermediate values, and

> wi=1 (if all D1 are weighted equally, then wi= 0.167).

DSQI of present design be compared with past DSQI. If DSQI is
significantly lower than the average, further design work and review are
indicated

Metrics For Object-Oriented Design: Whitmire [WHI97] describes nine
distinct and measurable characteristics of an OO design:

Size: Size is defined in terms of four views: population, volume, length, and
functionality

Complexity: How classes of an OO design are interrelated to one another

Coupling: The physical connections between elements of the OO design

Sufficiency: “the degree to which an abstraction possesses the features
required of it, or the degree to which a design component possesses features
in its abstraction, from the point of view of the current application.”

Completeness: An indirect implication about the degree to which the
abstraction or design component can be reused.

Cohesion: The degree to which all operations working together to achieve a
single, well-defined purpose.

Primitiveness: Applied to operations and classes, the degree to which an
operation is atomic.

Similarity: The degree to which two or more classes are similar in terms of
their structure, function, behavior, or purpose.

Volatility: Measures the likelihood that a change will occur.

Class-Oriented Metrics-The CK Metrics suite: Proposed by Chidamber and Kemerer

Weighted methods per class: Assume that n methods of complexity c1,c2,---cn

are defines for a class C WMC=}ci for i=1 ton

The number of methods and their complexity are reasonable indicators of
amount or effort required to implement and test a class.

Depth of the inheritance tree: Max length form node to root of tree
referring to fig DIT=4. As DIT grows low-level classes will inherit many
methods, this leads to many difficulties & greater design complexity.

T

Can

Number of children: The subclasses that are immediately subordinate to a
class in class hierarchy are termed its children. As NOC grows reuse
increases but abstraction represented by parent class is diluted if some
children are not appropriate members of parent class.

Coupling between object classes: As CBO increases reusability decreases

Response for a class: A set of methods that can potentially be executed in
response to a message.RFC is no. of methods in response set. As RFC
increases complexity increases.

Lack of cohesion in methods: LCOM is no. of methods that access one or more of
same attributes. If no methods access same attribute LCOM=0

Class-Oriented Metrics: The MOOD Metrics Suite

Method Inheritance Factor:

MIF = 3 MJ(C)/S M(C)

where the summation occurs over | = 1 to T.. T, is defined as the total number of
classes in the architecture; C; is a class within the architecture; and

M (C) = My(Cy) + M{C)
where

M., (C) = the number of methods that can be invoked in association with .
M4C) = the number of methods declared in the class C;.
MAC) = the number of methods inherited (and not overridden) in C;

Coupling factor:

CE = E; 5 is_client (C;; G /A(T:2 — T)
where the summations occur over i = 1 to T and j = 1 ta T.. The funclion

is_client = 1, if and only if a relationship exists between the client class, C,_,
and the server class, C;, and C_ = C;
= O, otherwise

If CF increases the complexity of OO software also increases.

Class-Oriented Metrics Proposed by Lorenz and Kidd

Lorenz and Kidd divide class-based metrics into four broad categories

° Size-Oreinted Metrics: focus on count of attributes and operations
for an individual class Inheritance-Based Metrics: focus on manner in which
operations are reused through class hierarchy Merics For Class Internal:
focus on cohesion

Metrics For External: focus on coupling

® (Component-Level design metrics
Cohesion metrics: a function of data objects and the focus of their definition

Coupling metrics: a function of input and output parameters, global variables,
and modules.

d, = number of cutpul data parameters
¢, = number of output control parameters

For global coupling,

g+ = number of global variables used as data
g. = number of global variables used as control

For environmental coupling,

w = number of modules called (fan-out)
r = number of modules calling the module under consideration (fan-in)

Using these measures, a module coupling indicator, m,, is defined in the following
way:

m_ = Kk/M
where k is a proportionality constant and
M=di+laxc)+do+(DXC)+gy+(cXg)+wW+r (15-6)

Values for k., a, b, and ¢ must be derived empirically.

As the value of m. increases, the overall module coupling decreases. In order to
have the coupling metric move upward as the degree of coupling increases, a revised
coupling metric may be defined as

C=1-m,

Complexity metrics: hundreds have been proposed (e.g., Cyclomatic complexity)

® Operation-Oriented Metrics

v/ average operation size
v/ operation complexity
v/ average number of parameters per operation

e Interface Design Metrics

Layout appropriateness. a function of layout entities, the geographic position
and the “cost” of making transitions among entities. This is a worthwhile
design metric for interface design.

METRICS FOR SOURCE CODE

+ Primitive measure that may be derived after the code is generated or
estimated once design is complete. Length N = ni1 log2 n1 + n2 log2 n2 Program
volume V = N log2 (n1 + n2) Volume ratio L=2/n1 * n2/N2 Where n1 = the number
of distinct operators that appear in a program n2 = the number of distinct operands
that appear in a program N1 = the total number of operator occurrences.

N2 = the total number of operand occurrence.

METRICS FOR TESTING

* Program Level and Effort
* PL=1/[(n1/2)x (N2/n2l)]
+ e=V/PL

METRICS FOR MAINTENANCE

IEEE standard suggests a software maturity index that provides indication of
stability of software product. The Software Maturity Index, SMI, is defined
as:

SMI = [Mt-(Fc+ Fa+ Fdy Mt]

Where Mt= the number of modules in the current release
Fc = the number of modules in the current release

that have been changed Fa = the number of

modules in the current release that have been
added.

Fda = the number of modules from the preceding release that were deleted in
the current release

Estimation:

Software Process Improvement:

The term software process improvement (SPI) implies many things. First, it
implies that elements of an effective software process can be defined in an
effective manner; second, that an existing organizational approach to software
development can be assessed against those elements; and third, that a meaningful
strategy for improvement can be defined. The SPI strategy transforms the
existing approach to software development into something that is more focused,
more repeatable, and more reliable (in terms of the quality of the product
produced and the timeliness of delivery).

Because SPI is not free, it must deliver a return on investment. The effort and
time that is required to implement an SPI strategy must pay for itself in some
measurable way. To do this, the results of improved process and practice must
lead to a reduction in software “problems” that cost time and money. It must
reduce the number of defects that are delivered to end users, reduce the amount of
rework due to quality problems, reduce the costs associated with software
maintenance and support, and reduce the indirect costs that occur when software

is delivered late.

Approaches to SPI
Although an organization can choose a relatively informal approach to SPI, the
vast majority choose one of a number of SPI frameworks. An SPI framework
defines (1) a set of characteristics that must be present if an effective software
process is to be achieved, (2) a method for assessing whether those characteristics
are present, (3) a mechanism for summarizing the results of any assessment, and
(4) a strategy for assisting a software organization in implementing those process

characteristics that have been found to be weak or missing.

Is

examined Identifies capabilities,

strengths, and weaknesses
f

Identifies changes
to

Suggests

improverment)
P dentifies maturity of

approach f

Capability
determinatio
n

Improvemean
t strategy

Is a foundation
for

An SPI framework assesses the “maturity” of an organization’s software
process and provides a qualitative indication of a maturity level. In fact, the
term “maturity model” (Section 30.1.2) is often applied. In essence, the SPI
framework encompasses a maturity model that in turn incorporates a set of
process quality indicators that pro- vide an overall measure of the process
quality that will lead to product quality.

Figure 30.1 provides an overview of a typical SPI framework. The key
elements of the framework and their relationship to one another are shown.

You should note that there is no universal SPI framework. In fact, the SPI
frame- work that is chosen by an organization reflects the constituency that
is championing the SPI effort. Conradi [Con96] defines six different SPI

support constituencies:

Quality certifiers. Process improvement efforts championed by this

group focus on the following relationship:

Quality(Process) = Quality(Product)

Their approach is to emphasize assessment methods and to examine a

well- defined set of characteristics that allow them to determine
whether the process exhibits quality. They are most likely to adopt a
process framework such as the CMM, SPICE, TicKIT, or Bootstrap.'

Formalists. This group wants to understand (and when possible, optimize)
process workflow. To accomplish this, they use process modeling languages
(PMLs) to create a model of the existing process and then design extensions

or modifications that will make the process more effective.

Tool advocates. This group insists on a tool-assisted approach to SPI that
models workflow and other process characteristics in a manner that can be

analyzed for improvement.

Practitioners. This constituency uses a pragmatic approach, “emphasizing
mainstream project-, quality- and product management, applying project-
level planning and metrics, but with little formal process modeling or enact-

ment support” [Con96].

Reformers. The goal of this group is organizational change that might lead
to a better software process. They tend to focus more on human issues

(Section 30.5) and emphasize measures of human capability and structure.

Ideologists. This group focuses on the suitability of a particular process model
for a specific application domain or organizational structure. Rather than typi-
cal software process models (e.g., iterative models), ideologists would have a

greater interest in a process that would, say, support reuse or reengineering.

As an SPI framework is applied, the sponsoring constituency (regardless of its
over- all focus) must establish mechanisms to: (1) support technology transition,
(2) deter- mine the degree to which an organization is ready to absorb process
changes that are proposed, and (3) measure the degree to which changes have been

adopted.

Maturity Models
A maturity model 1s applied within the context of an SPI framework. The intent of
the maturity model is to provide an overall indication of the “process maturity”
exhibited by a software organization. That is, an indication of the quality of the
software process, the degree to which practitioner’s understand and apply the
process, and the general state of software engineering practice. This is

accomplished using some type of ordinal scale.

For example, the Software Engineering Institute’s Capability Maturity Model

five levels of maturity [Sch96]:

Level 5, Optimized—The organization has quantitative feedback systems in place to identify process weaknesses and
strengthen them pro-actively. Project teams analyze defects to determine their causes; software processes are evaluated

and updated to pre- vent known types of defects from recurring.

Level 4, Managed—Detailed software process and product quality metrics establish the quantitative evaluation
foundation. Meaningful variations in process performance can be distinguished from random noise, and trends in process

and product qualities can be predicted.

Level 3, Defined—Processes for management and engineering are documented, standardized, and integrated into

a standard software process for the organization.

All projects use an approved, tailored version of the organization’s standard software process for developing

software.

Level 2, Repeatable—Basic project management processes are established to track cost, schedule, and

functionality. Planning and managing new products is based on experience with similar projects.

Level 1, Initial—Few processes are defined, and success depends more on individ- ual heroic efforts than

on following a process and using a synergistic team effort.

The CMM maturity scale goes no further, but experience indicates that many
organ- izations exhibit levels of “process immaturity” [Sch96] that
undermine any rational attempt at improving software engineering practices.
Schorsch [Sch06] suggests four levels of immaturity that are often

encountered in the real world of software development organizations:

Level 0, Negligent—Failure to allow successful development process to succeed. All prob- lems are perceived to
be technical problems. Managerial and quality assurance activities are deemed to be overhead and superfluous

to the task of software development process. Reliance on silver pellets.

Level -1, Obstructive—Counterproductive processes are imposed. Processes are rigidly defined and
adherence to the form is stressed. Ritualistic ceremonies abound. Collective management precludes assigning

responsibility. Status quo Uber alles.

Level -2, Contemptuous—Disregard for good software engineering institutionalized. Complete schism
between software development activities and software process improvement activities. Complete lack of a

training program.

Level —3, Undermining—Total neglect of own charter, conscious discrediting of peer organization’s software

process improvement efforts. Rewarding failure and poor performance.

Schorsch’s immaturity levels are toxic for any software organization. If
you encounter any one of them, attempts at SPI are doomed to failure.

The overriding question is whether maturity scales, such as the one
proposed as part of the CMM, provide any real benefit. I think that they do.
A maturity scale provides an easily understood snapshot of process quality
that can be used by practitioners and managers as a benchmark from which

improvement

strategies can be planned.

THECMMI :

L Evatstes The original CMM was developed and upgraded by the

e ket Software Engineering Insti- tute throughout the 1990s as a
HYFPFESLIME

e complete SPI framework. Today, it has evolved into the
e Capability Maturity Model Integration (CMMI) [CMMO07], a
comprehensive process meta-model that is predicated on a set
of system and software engineering capabil- ities that should
be present as organizations reach different levels of process
capa- bility and maturity.
The CMMI represents a process meta-model in two
different ways: (1) as a “continuous” model and (2) as a
“staged” model. The continuous CMMI meta- model
describes a process in two dimensions as illustrated in Figure
30.2. Each process area (e.g., project planning or
requirements management) is formally assessed against
specific goals and practices and is rated according to the

follow- ing capability levels:

Level 0: Incomplete—the process area (e.g.,
requirements management) is either not performed or
does not achieve all goals and objectives defined by the

CMMI for level 1 capability for the process area.

Level 1: Performed—all of the specific goals of the
process area (as defined by the CMMI) have been
satisfied. Work tasks required to produce defined work

products are being conducted.

Capability level

MA CM PPQA other

PP REQM

Process area

Level 2: Managed—all capability level 1 criteria have been satisfied.
In addi- tion, all work associated with the process area conforms to an
organizationally defined policy; all people doing the work have access
to adequate resources to get the job done; stakeholders are actively
involved in the process area as required; all work tasks and work
products are “monitored, controlled, and reviewed; and are evaluated

for adherence to the process description” [CMMO07].

Level 3: Defined—all capability level 2 criteria have been achieved. In
addi- tion, the process is “tailored from the organization’s set of
standard processes according to the organization’s tailoring guidelines,
and con- tributes work products, measures, and other
process-improvement informa- tion to the organizational process
assets” [CMMO7].

Level 4: Quantitatively managed—all capability level 3 criteria have
been achieved. In addition, the process area is controlled and improved
using measurement and quantitative assessment. “Quantitative objectives
for qual- ity and process performance are established and used as criteria
in managing the process” [CMMO07].

Level 5: Optimized—all capability level 4 criteria have been achieved.
In addition, the process area is adapted and optimized using

quantitative (statistical) means to meet changing customer needs and

to continually improve the efficacy of the process area under

consideration.

The CMMI defines each process area in terms of “specific goals” and the
“specific practices” required to achieve these goals. Specific goals establish
the characteristics that must exist if the activities implied by a process area
are to be effective. Specific practices refine a goal into a set of

process-related activities.

For example, project planning is one of eight process areas defined by the CMMI
for “project management” category.® The specific goals (SG) and the associated spe-

cific practices (SP) defined for project planning are [CMMO7]:

SG 1 Establish Estimates

SP 1.1-1 Estimate the Scope of the Project

SP 1.2-1 Establish Estimates of Work Product and Task

Attributes SP 1.3-1 Define Project Life Cycle

SP 1.4-1 Determine Estimates of Effort and Cost

SG 2 Develop a Project Plan

SP 2.1-1 Establish the Budget and
Schedule SP 2.2-1 Identify Project

Risks

SP 2.3-1 Plan for Data
Management SP 2.4-1 Plan

for Project Resources

SP 2.5-1 Plan for Needed Knowledge and
Skills SP 2.6-1 Plan Stakeholder

Involvement

SP 2.7-1 Establish the Project Plan

SG 3 Obtain Commitment to the Plan

SP 3.1-1 Review Plans That Affect the
Project SP 3.2-1 Reconcile Work and
Resource Levels SP 3.3-1 Obtain Plan

Commitment

In addition to specific goals and practices, the CMMI also defines a set of
five generic goals and related practices for each process area. Each of the
five generic goals corresponds to one of the five capability levels. Hence, to
achieve a particular capability level, the generic goal for that level and the
generic practices that corre- spond to that goal must be achieved. To
illustrate, the generic goals (GG) and prac- tices (GP) for the project
planning process area are [CMMO7]:

GG 1 Achieve Specific Goals

GP 1.1 Perform Base Practices

GG 2 Institutionalize a Managed
Process GP 2.1 Establish an
Organizational Policy GP 2.2 Plan

the Process

GP 2.3 Provide
Resources GP 2.4

Assign

Responsibility GP

2.5 Train People

GP 2.6 Manage Configurations

GP 2.7 Identify and Involve Relevant

Stakeholders GP 2.8 Monitor and Control the

Process

GP 2.9 Objectively Evaluate Adherence

GP 2.10 Review Status with Higher-Level Management

GG 3 Institutionalize a Defined Process

GP 3.1 Establish a Defined Process

GP 3.2 Collect Improvement Information

GG 4 Institutionalize a Quantitatively Managed Process

GP 4.1 Establish Quantitative Objectives for the

Process GP 4.2 Stabilize Subprocess Performance

GG 5 Institutionalize an Optimizing Process

GP 5.1 Ensure Continuous Process

Improvement GP 5.2 Correct Root Causes

of Problems
Level Focus Process Areas
. Continuous workforce innovation
S Continuous - .
Optimized . Organizational performance alignment
improvement - sl
Continuous capability improvement
Mentoring
Quantifies and Organizational capability management
- manages Quantitative performance
Predictable knowledge, skills, management Competency-based
and abilities assets
Empowered workgroups
Competency integration
Participatory culture
Identifies and Workgroup development
Competency-based
, develops -
Defined . practices Career
knowledge, skills,
P development Competency
and abilities
development Workforce
planning Competency
analysis
Compensation
Repeatable, Training and
Managed basic people development
management Performance
practices management Work
environment
Communication and
co-ordination Staffing
Initial Inconsistent

practices

	UNIT V
	SOFTWARE QUALITY
	Measures, Metrics and Indicators
	
	
	METRICS FOR ANALYSIS MODEL
	FP = count total * [0.65 + 0.01* ∑(Fi)]
	FP = 50 * [0.65 + 0.01 *46] = 56

	METRICS FOR DESIGN MODEL
	S(i) = f 2out(i)
	D(i) = v(i)/[fout(i) +1]
	C(i) = S(i) + D(i)
	Calculate D1 to D6 from s1 to s7 as follows:
	DSQI=∑ WiDi
	Method Inheritance Factor:

	Class-Oriented Metrics Proposed by Lorenz and Kidd
	●​Component-Level design metrics
	●​Operation-Oriented Metrics
	●​Interface Design Metrics

	
	METRICS FOR SOURCE CODE
	METRICS FOR TESTING
	METRICS FOR MAINTENANCE
	​​Approaches to SPI
	​​Maturity Models

