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By the end of this section, you will be able to do the following:
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Associate physical quantities with their International System of Units (SDand' perform

conversions among Sl units using scientific notation
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Relate measurement uncertainty to significant figures and apply the rules for using

significant figures in calculations
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Correctly create, label’, and identify relationships in graphs using mathematical relationships

(e.g., slope, y—intercept, inverse, quadratic and logarithmic)
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The Role of Units / &9 2] &

Physicists, like other scientists, make observations and ask basic questions. For example, how
big is an’ object? How much mass does it have? How far did it travel? To answer these
questions, they make measurements with various instruments (e.g., meter stick, balance,

stopwatch, etc.).
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The measurements of physical quantities are expressed in terms of units, which are
standardized values. For example, the length of a race, which is a physical quantity, can be
expressed in meters (for sprinters) or kilometers (for long distance runners). Without
standardized units, it would be extremely difficult for scientists to express and compare

measured values in a meaningful way (Figure 1.13).
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Figure 1.13 Distances given in unknown units are maddeningly useless.
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All physical quantities in the International System of Units (SI) are expressed in terms of
combinations of seven fundamental physical units’, which are units for: length, mass, time,

electric current, temperature, amount of a substance, and luminous intensity.

SATFY A (Le Systeme Intenational d’ Unites, SDol| = BE 2|52 o], A A7H A5,
2%, 4%, FEE U= T7H] 7129917 2 E oA 2r1E YT

SI Units: Fundamental and Derived Units / SI ©9]: 7] 29| <}
FED

In any system of units, the units for some physical quantities must be defined through a
measurement process. These are called the base quantities for that system and their units are
the system’s base units.’ All other physical quantities can then be expressed as algebraic
combinations of the base quantities. Each of these physical quantities is then known as a
derived quantity and each unit is called a derived unit. The choice of base quantities is
somewhat arbitrary, as long as they are independent of each other and all other quantities can

be derived from them. Typically, the goal is to choose physical quantities that can be measured
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accurately to a high precision as the base quantities. The reason for this is simple. Since the
derived units can be expressed as algebraic combinations of the base units, they can only be as

accurate and precise as the base units from which they are derived.

ofwst BEANAE AR el whelt wEA ZAL AR Holsolol Ut of
FEL S WAl JE@oldtn sw, o ZeFSe] WSS WY WA
ERogiuth 199 thE BE Bejge M Hae hHoR 283

Based on such considerations, the International Standards Organization recommends using
seven base quantities, which form the International System of Quantities (ISQ).” These are the
base quantities used to define the SI base units. (Table 1.1) lists these seven ISQ base quantities

and the corresponding SI base units.
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Quantity Name Symbol
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Length Meter m
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Mass Kilogram kg
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Time Second S
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Electric current Ampere A
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Temperature Kelvin K

ox )
Amount of substance Mole mol
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Luminous intensity Candela cd
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Table 1.1 SI Base Units
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The Meter / 9| €

The SI unit for length is the meter (m). The definition of the meter has changed over time to
become more accurate and precise. The meter was first defined in 1791 as 1/10,000,000 of the
distance from the equator to the North Pole. This measurement was improved in 1889 by
redefining the meter to be the distance between two engraved lines on a platinum—iridium bar.
(The bar is now housed at the International Bureau of Weights and Measures, near Paris). By
1960, some distances could be measured more precisely by comparing them to wavelengths of
light. The meter was redefined as 1,650,763.73 wavelengths of orange light emitted by krypton
atoms. In 1983, the meter was given its present definition as the distance light travels in a
vacuum in 1/ 299,792,458 of a second (Figure 1.14).
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Figure 1.14 The meter is defined to be the distance light travels in 1/299,792,458 of a second through a vacuum.

Distance traveled is speed multiplied by time.
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The Kilogram / 22 17

The SI unit for mass is the kilogram (abbreviated kg); it was previously defined to be the mass
of a platinum—iridium cylinder kept with the old meter standard at the International Bureau of
Weights and Measures near Paris. Exact replicas of the previously defined kilogram are also
kept at the United States’ National Institute of Standards and Technology, or NIST, located in
Gaithersburg, Maryland outside of Washington D.C., and at other locations around the world.
The determination of all other masses could be ultimately traced to a comparison with the
standard mass. Even though the platinum—iridium cylinder was resistant to corrosion,
airborne contaminants were able to adhere to its surface, slightly changing its mass over time.
In May 2019, the scientific community adopted a more stable definition of the kilogram. The
kilogram is now defined in terms of the second, the meter, and Planck’s constant, h (a

quantum mechanical value that relates a photon's energy to its frequency®).
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The Second / %

The SI unit for time, the second (s) also has a long history. For many years it was defined as

1/86,400 of an average solar day. However, the average solar day is actually very gradually
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getting longer due to gradual slowing of Earth’s rotation. Accuracy in the fundamental units is
essential, since all other measurements are derived from them. Therefore, a new standard was
adopted to define the second in terms of a non—varying, or constant, physical phenomenon.
One constant phenomenon is the very steady vibration of Cesium atoms, which can be
observed and counted. This vibration forms the basis of the cesium atomic clock. In 1967, the
second was redefined as the time required for 9,192,631,770 Cesium atom vibrations (Figure
1.15).
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Figure 1.15 An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of one
microsecond per year. The fundamental unit of time, the second, is based on such clocks. This image is looking

down from the top of an atomic clock. (Steve Jurvetson/Flickr)
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The Ampere / &= o]

Electric current is measured in the ampere (A), named after Andre Ampere. You have probably
heard of amperes, or amps, when people discuss electrical currents or electrical devices.
Understanding an ampere requires a basic understanding of electricity and magnetism,
something that will be explored in depth in later chapters of this book. Basically, two parallel
wires with an electric current running through them will produce an attractive force on each

other. One ampere is defined as the amount of electric current that will produce an attractive



— . . :
force of 2.7x10 " newton per meter of separation between the two wires (the newton is the

derived unit of force).’
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Kelvins / A4l

The SI unit of temperature is the kelvin (or kelvins, but not degrees kelvin). This scale is named
after physicist William Thomson, Lord Kelvin, who was the first to call for an absolute
temperature scale. The Kelvin scale is based on absolute zero. This is the point at which all
thermal energy has been removed from all atoms or molecules in a system. This temperature, 0
K, is equal to —273.15 ° C and -459.67 ° F. Conveniently, the Kelvin scale actually changes
in the same way as the Celsius scale. For example, the freezing point (0 ° C) and boiling points
of water (100 ° C) are 100 degrees apart on the Celsius scale. These two temperatures are also
100 kelvins apart (freezing point = 273.15 K; boiling point = 373.15 K).
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Physical objects or phenomena may vary widely. For example, the size of objects varies from
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something very small (like an atom) to something very large (like a star). Yet the standard
metric unit of length is the meter. So, the metric system includes many prefixes that can be
attached to a unit. Each prefix is based on factors of 10 (10, 100, 1,000, etc., as well as 0.1,
0.01, 0.001, etc.). Table 1.2 gives the metric prefixes and symbols used to denote the different

various factors of 10 in the metric system.
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exa E 10" Exameter Em 10® m Distance light travels
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100 & &<t Ho
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peta p 107 Petasecond | Ps 10" s 30 million years
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centi | ¢ 10 Centimeter  cm 10*m Fingertip thickness
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milli m 10° Milimeter mm 107 m Flea at its shoulder'
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micro | p 10°° Micrometer | pm 10°m Detail in microscope
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nano  n 10°  Nanogram | ng 107 g Small speck of dust
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HE HEn E Fg7e] A7
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Table 1.2 Metric Prefixes for Powers of 10 and Their Symbols Note—Some examples are approximate.
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The metric system is convenient because conversions between metric units can be done simply
by moving the decimal place of a number. This is because the metric prefixes are sequential
powers of 10. There are 100 centimeters in a meter, 1000 meters in a kilometer, and so on. In
nonmetric systems, such as U.S. customary units, the relationships are less simple—there are 12
inches in a foot, 5,280 feet in a mile, 4 quarts in a gallon, and so on. Another advantage of the
metric system is that the same unit can be used over extremely large ranges of values simply by
switching to the most—appropriate metric prefix. For example, distances in meters are suitable
for building construction, but kilometers are used to describe road construction. Therefore,
with the metric system, there is no need to invent new units when measuring very small or very

large objects—you just have to move the decimal point (and use the appropriate prefix).
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Table 1.3 lists known lengths, masses, and time measurements. You can see that scientists use a
range of measurement units. This wide range demonstrates the vastness and complexity of the
universe, as well as the breadth of phenomena physicists study. As you examine this table, note
how the metric system allows us to discuss and compare an enormous range of phenomena,

using one system of measurement (Figure 1.16 and Figure 1.17).
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Milky Way Galaxy
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10% Distance from Earth [ 10% | Mass of the Milky

to the nearest large Way galaxy
galaxy (Andromeda) (current upper
limit)
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Table 1.3 Approximate Values of Length, Mass, and Time [1] More precise values are in parentheses.
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Figure 1.16 Tiny phytoplankton float among crystals of ice in the Antarctic Sea. They range from a few
micrometers to as much as 2 millimeters in length. (Prof. Gordon T. Taylor, Stony Brook University; NOAA Corps

Collections)
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Figure 1.17 Galaxies collide 2.4 billion light years away from Earth. The tremendous range of observable
phenomena in nature challenges the imagination. (NASA/CXC/UVic./A. Mahdavi et al. Optical/lensing:
CFHT/UVic./H. Hoekstra et al.)
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5ot s AAdES A=yt (NASA/CXC/UVic./A. Mahdavi et al. Optical/lensing: CFHT/UVic./H.
)

Using Scientific Notation with Physical Measurements / 35+
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Scientific notation is a way of writing numbers that are too large or small to be conveniently

written as a decimal. For example, consider the number 840,000,000,000,000. It's a rather
: e : . : 4 o . .-

large number to write out. The scientific notation for this number is 8.40%x10 . Scientific

notation follows this general format
oA BAWE YR aAY B 542 WP ssE
840,000,000,000,0008t= =S w2 EAQ. H7]
HrMo R 1|51 8.40x10 Ut Fehy mo|HLe

w, A

xx 10

In this format x is the value of the measurement with all placeholder zeros removed. In the
example above, x is 8.4. The x is multiplied by a factor, 10”, which indicates the number of
placeholder zeros in the measurement. Placeholder zeros are those at the end of a number that
is 10 or greater, and at the beginning of a decimal number that is less than 1. In the example
above, the factor is 10"*. This tells you that you should move the decimal point 14 positions to
the right, filling in placeholder zeros as you go. In this case, moving the decimal point 14
places creates only 13 placeholder zeros, indicating that the actual measurement value is

840,000,000,000,000.
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Numbers that are fractions can be indicated by scientific notation as well. Consider the
. e . . —6 . s .
number 0.0000045. Its scientific notation is 4.5x10 . Its scientific notation has the same

format

E719 4 d54th 0.00000452H= =215 &8 HAQ. o]
W 4.5x10 °dUch o] THetA BrHE 9o} TG FAL

x X 10,

Here, x is 4.5. However, the value of y in the 10” factor is negative, which indicates that the
measurement is a fraction of 1. Therefore, we move the decimal place to the left, for a negative
y. In our example of 4. 5x10"°, the decimal point would be moved to the left six times to yield
the original number, which would be 0.0000045.

Q71 x 4594 2tk 10" 240 Sl yo A2 S =4
o syt mEbe S92l yE WA aade AEo R FFofof "ZME} T7]'4' 5x10° J
o dAedE Wl +E EEsH] HAdl 2ede g9Fe=m 6W FHofof skl I g2

0.00000454 Yt

The term order of magnitude refers to the power of 10 when numbers are expressed in
scientific notation. Quantities that have the same power of 10 when expressed in scientific
notation, or come close to it, are said to be of the same order of magnitude. For example, the
number 800 can be written as 8x 102, and the number 450 can be written as 4. 5x10°. Both
numbers have the same value for y. Therefore, 800 and 450 are of the same order of
magnitude. Similarly, 101 and 99 would be regarded as the same order of magnitude, 10°.
Order of magnitude can be thought of as a ballpark estimate for the scale of a value. The
diameter of an atom is on the order of 10 m, while the diameter of the sun is on the order of

10” m. These two values are 18 orders of magnitude apart.
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Scientists make frequent use of scientific notation because of the vast range of physical
measurements possible in the universe, such as the distance from Earth to the moon (Figure

1.18), or to the nearest star.

HAAEL $FANN EAT & b BUFe] WPt WpsinE Be BN A4F
j= 3
=
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Figure 1.18 The distance from Earth to the moon may seem immense, but it is just a tiny fraction of the distance

from Earth to our closest neighboring star. (NASA)

Y L18 A7NA 27K Al Athal Helxu, g AV ot G Aele] vskd 14 Zte
229 Belyet. (NASA)

Unit Conversion and Dimensional Analysis / ©<] ¥3t

It is often necessary to convert from one type of unit to another. For example, if you are
reading a European cookbook in the United States, some quantities may be expressed in liters
and you need to convert them to cups. A Canadian tourist driving through the United States
might want to convert miles to kilometers, to have a sense of how far away his next
destination is. A doctor in the United States might convert a patient’s weight in pounds to

kilograms.
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Let’s consider a simple example of how to convert units within the metric system. How can we

convert 1 hour to seconds?

oE ] A GHE ofgA HEstEAl det AR dokEAlt g 1 Al 2=

First, we need to determine a conversion factor. A conversion factor is a ratio expressing how
many of one unit are equal to another unit. A conversion factor is simply a fraction which
equals 1. You can multiply any number by 1 and get the same value. When you multiply a
number by a conversion factor, you are simply multiplying it by one. For example, the
following are conversion factors: (1 foot)/(12 inches) = 1 to convert inches to feet, (1
meter)/(100 centimeters) = 1 to convert centimeters to meters, (1 minute)/(60 seconds) = 1 to

convert seconds to minutes.

A7, AL QIZFE Faflof FuTh BHAL QIAF= §F T97F o] HE Qlojof trE vt @
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S1E/60% =1 (22 208 wWagyr})

Now we can set up our unit conversion. We will write the units that we have and then
multiply them by the conversion factor (1 km/1,000m) = 1, so we are simply multiplying
80m" by 1:

oA FHE W FHIE T 5 AU FolH H9ES A, Ot 01 oS0 3HAE
12H1 km /1,000 m = 1)& 23

05 = 36005 = 3.6x10° s++(1. 1)

When there is a unit in the original number, and a unit in the denominator (bottom) of the
conversion factor, the units cancel. In this case, hours and minutes cancel and the value in

seconds remains.

Al skl ©E97F AL Fhat IS E RO @97F e O @l AU, o] Aol
Azt Bol YA 3 22 H gre] ¥ Hyth

You can use this method to convert between any types of unit, including between the U.S.

B 480 m"9} “1000 m™ ] ®oj£7]7} 5¥ A @4UTH AGoli ‘m g £o] Al Z QIolAg, THE RO A% 5ol
2 70 Bop o] Ak Fo] grka Azt



customary system and metric system. Notice also that, although you can multiply and divide
units algebraically, you cannot add or subtract different units. An expression like
10 km + 5kg makes no sense. Even adding two lengths in different units, such as
10 km + 20m does not make sense. You express both lengths in the same unit."* See

Reference Tables for a more complete list of conversion factors.

]

‘I._

O
oL

rlr oy 1

< U= g DA vl Ato]of e Mghe EFSA BE FRo| el Hghef 2d
Ut Eo S tieA 22 H914 s e Tl StEEte A2 e EH% Eﬁ Al
%it} A fFas) FA12. 10 km + 5 kg 22 FF2 Tol H] F5uth. 4A] 1

0 me} Zo] o2 &9 F dolE tsle Tol oF FYrh. I F do] BF g2 L—‘Hi
27] 8H°1: Syt o W A QIS B A OAH 2 B8 BES ASA| Q.

oo
4 30

WORKED EXAMPLE / 9A

Unit Conversions: A Short Drive Home
4] HE — A = B2 ARt

Suppose that you drive the 10.0 km from your university to home in 20.0 min. Calculate
your average speed (a) in kilometers per hour (km/h) and (b) in meters per second (m/s).

(Note—Average speed is distance traveled divided by time of travel.)

tietwol A ¥742] 10.0 kmE 20 & Bt 2484 kol Bzbe) BAR. B £ (a)
Azt 2 Ad2aE (km/h) A9 (b) 21 2 vE(m/s) QA2 AASHAIR. C Bt £
o5t A E ol FT AR e AYYH)

STRATEGY

A2k

First we calculate the average speed using the given units. Then we can get the average speed
into the desired units by picking the correct conversion factor and multiplying by it. The
correct conversion factor is the one that cancels the unwanted unit and leaves the desired

unit in its place.

WA B £8L Fold Doz AMshich 2w Sule Bt RS BahA Fold W
4o Botd st BeIE | BF £ 1T 5 UEUT 2912 F A2 29 A
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Solution for (a)
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https://openstax.org/books/physics/pages/a-reference-tables
https://openstax.org/books/physics/pages/a-reference-tables
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1. Calculate average speed. Average speed is distance traveled divided by time of travel.
(Take this definition as a given for now—average speed and other motion concepts will be

covered in a later module.) In equation form,

distance ( A g )

average speed (B £¥) = —— 170

2. Substitute the given values for distance and time.
2. 72| e} A 2 of] ol AR o AR S oA .

10.0 km = 0.500

20.0 min min

3. Convert km/min to km/h: multiply by the conversion factor that will cancel minutes and

average speed (3 £9) =

60
leave hours. That conversion factor is 2™ Thus,

1h
388 293 AL W1 S AR FAA km/min km/he WE BA 8. 0171914
ure gt QlAb LMoyt neby Avke BTt 24,

4

) = 0500 x 2 = 30, 0%

average speed (%8 1 T

Discussion for (a)

(a)°l diet £

To check your answer, consider the following:
dH= st tha2 s FAL

1. Be sure that you have properly cancelled the units in the unit conversion. If you have
written the unit conversion factor upside down, the units will not cancel properly in the
equation. If you accidentally get the ratio upside down, then the units will not cancel;

rather, they will give you the wrong units as follows

1Sl W A A8 9912 AL Sls] AL B B A4S AT How
Nel A @el7t AAs] AYAA e AYUTh ASE 1 HES AT 29, G9So]
QYA =AY TheTt o] HE BeI7E wrEoiH .

km 1 hr 1 kmh
min 60 min 60 in®’

which are obviously not the desired units of km/h.

Hkebel km/h ©$17H ] opdu e




2. Check that the units of the final answer are the desired units. The problem asked us to

solve for average speed in units of km/h and we have indeed obtained these units.

2. A% T Bt vietd 99191 steld FAL. BAE B 3L km/h B9
Ta71E QTR AAR o] U915 EEFAUT

3. Check the significant figures. Because each of the values given in the problem has three
significant figures, the answer should also have three significant figures. The answer 30.0
km/h does indeed have three significant figures, so this is appropriate. Note that the
significant figures in the conversion factor are not relevant because an hour is defined to be

60 min, so the precision of the conversion factor is perfect.

3. F8 RAE Eelo] FAIQ. FANA T 2t gho] & A7t 3ol B R, Y
5247} 370]ofoF gyt Aeel 30.0 km/hxe AAR G& S27) 30|22 A Aot
gt QIZFO] f 8 A AR FE =& Aol 9 PR geS Ed FA8. o=
1A|ZFo] 6020 & o5 o] 4] SHiF Q12Fo] U 7} b 61| wjZ U T,

4. Next, check whether the answer is reasonable. Let us consider some information from the
problem—if you travel 10 km in a third of an hour (20 min), you would travel three times

that far in an hour. The answer does seem reasonable.

4. ke, Aol geHAA s HAR. BAGA Foid R Hro] da] A7t
HATh gheF 1 A]7Fe] 1/3 (20 B) Z9F 10 kmE 0|53 1 AJ7F Sotol= 1719 3uj&
ol s AdYrt opebA Aol g H o=z Holytt,

Solution for (b)*

(b)ell gt 2ol

There are several ways to convert the average speed into meters per second.
W@ 482 vle o) 22 Wee 2 7p) ol gy,

1. Start with the answer to (a) and convert km/h to m/s. Two conversion factors are

needed—one to convert hours to seconds, and another to convert kilometers to meters.

1. (@9 dE2 &&al km/hE m/s= H2FcHH HYt} g4k 1z &= 7i7F 2 e gy}, shu=
AZHE 22 e Zolal, thE shvt= A2 uHE vEH 2 v Ay

2. Multiplying by these yields

2. 0] St AAEL Fohw thgo] gLt
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km 1h 1,000m
h 3,600s 1km

Discussion for (b)

(b)ell Hiet =]

If we had started with 0.500 km/min, we would have needed different conversion factors,

but the answer would have been the same: 8.33 m/s.

0.500 km/min®.2 A|Z3) o™ oh= g4t QIZ7 B Q3-S AdYrt. shATF ©-2 8.33 m/s&2
29k At

You may have noted that the answers in the worked example just covered were given to
three digits. Why? When do you need to be concerned about the number of digits in

something you calculate? Why not write down all the digits your calculator produces?

WE o Aol Q= AEES £A7k Al LS ofek EAAHS AUk 9 T8a?
AR el Satel g mefsor @717 9 ARlel et S48 AR

WORKED EXAMPLE / 4lA|

Using Physics to Evaluate Promotional Materials

=g %ts &8s FEE AF B

A commemorative coin that is 2” in diameter is advertised to be plated with 15 mg of gold.
If the density of gold is 19.3 g/cc, and the amount of gold around the edge of the coin can
be ignored, what is the thickness of the gold on the top and bottom faces of the coin?

5ol 2 A9 A¥FE} 15 mge] FOoB EFHltn FRET AUk Fo Yot
19.3 g/ecol il FhaAtele] Qi 39 e BAZ 4 9lom AW ofde] w3 7O
7 Akt

STRATEGY

Ae

To solve this problem, the volume of the gold needs to be determined using the gold’s mass
and density. Half of that volume is distributed on each face of the coin, and, for each face,
the gold can be represented as a cylinder that is 2” in diameter with a height equal to the

thickness. Use the volume formula for a cylinder to determine the thickness.
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Solution

Eo|

m=pV =15x10 g,

1=}
HT
rlr
iu)

g7} gt
p=19.3g/cc

and V is the volume. Solving for the volume gives

223 v Byt $0E ek et 2o

_m __ 15x10° g~
V_T_Tg/cc 78)(10

If t is the thickness, the volume corresponding to half the gold is
t2 Fole} oh 2 Agke] Bl o8} e
+(7.8x107") = m't = m(2.54),
where the 1" radius has been converted to cm. Solving for the thickness gives
SJOIA BRI S 1 A2 om AR th T8 FobE bt 2o,

§39><1021:1 9%10"° cm = 0.00019 mm.

7(2.54)

Discussion

Eo

The amount of gold used is stated to be 15 mg, which is equivalent to a thickness of about
0.00019 mm. The mass figure may make the amount of gold sound larger, both because the
number is much bigger (15 versus 0.00019), and because people may have a more intuitive
feel for how much a millimeter is than for how much a milligram is. A simple analysis of this

sort can clarify the significance of claims made by advertisers.

ol 15 mg AHEETH Yot 91, o] oF 0.00019 mm FAIe}t SLFYTH HFoz
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Accuracy, Precision and Significant Figures / A&tx, AU,
TR

Science is based on experimentation that requires good measurements. The validity of a
measurement can be described in terms of its accuracy and its precision (see Figure 1.19 and
Figure 1.20). Accuracy is how close a measurement is to the correct value for that
measurement. For example, let us say that you are measuring the length of standard piece of
printer paper. The packaging in which you purchased the paper states that it is 11 inches long,
and suppose this stated value is correct. You measure the length of the paper three times and
obtain the following measurements: 11.1 inches, 11.2 inches, and 10.9 inches. These
measurements are quite accurate because they are very close to the correct value of 11.0
inches. In contrast, if you had obtained a measurement of 12 inches, your measurement would
not be very accurate. This is why measuring instruments are calibrated based on a known
measurement. If the instrument consistently returns the correct value of the known

measurement, it is safe for use in finding unknown values.

3ol Qoht AeA QU dE Sof BE mAE §4 9] Folg AT R Az
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Figure 1.19 A double-pan mechanical balance is used to compare different masses. Usually an object with

unknown mass is placed in one pan and objects of known mass are placed in the other pan. When the bar that



connects the two pans is horizontal, then the masses in both pans are equal. The known masses are typically metal

cylinders of standard mass'® such as 1 gram, 10 grams, and 100 grams. (Serge Melki)

a9 119 71AA s34 Ae2 Az oE A2 Hlwshy] s AU B o & A
A7} golal, e & HAole dFe ot 2450l w4 F HAE dEst= 2zt
A2 EsUh dg2 ot &A= BE 1 19, 10 119, 100 19 22 &5 AT a5 971
(Serge Melki)

Capacity: 50g
Graduation: 0.01g

Ll

Figure 1.20 Whereas a mechanical balance may only read the mass of an object to the nearest tenth of a gram, some
digital scales can measure the mass of an object up to the nearest thousandth of a gram. As in other measuring
devices, the precision of a scale is limited to the last measured figures. This is the hundredths place in the scale
pictured here. (Splarka, Wikimedia Commons)

I% 1.20 71AA] AaS 29 419 A2 1/10 15 A7 & 4= ok, 29 A2 A5 2H 249 A<
171000 18 712 5S4 4 syt e 54 G2 7z A2 A9=s 1 Aez ol A7H]
279 & o] whet AFRY. o AL go] 257 ofd) B4 4271 the 2e Be AU, (Splarka,

Wikimedia Commons)

Precision states how well repeated measurements of something generate the same or similar
results. Therefore, the precision of measurements refers to how close together the
measurements are when you measure the same thing several times. One way to analyze the
precision of measurements would be to determine the range, or difference between the lowest
and the highest measured values. In the case of the printer paper measurements, the lowest
value was 10.9 inches and the highest value was 11.2 inches. Thus, the measured values
deviated from each other by, at most, 0.3 inches. These measurements were reasonably precise
because they varied by only a fraction of an inch. However, if the measured values had been
10.9 inches, 11.1 inches, and 11.9 inches, then the measurements would not be very precise

. .. 17
because there is a lot of variation ' from one measurement to another.
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The measurements in the paper example are both accurate and precise, but in some cases,
measurements are accurate but not precise, or they are precise but not accurate. Let us
consider a GPS system that is attempting to locate the position of a restaurant in a city. Think
of the restaurant location as existing at the center of a bull's—eye target. Then think of each

GPS attempt to locate the restaurant as a black dot on the bull’s eye.

0] 2l 87 57 dAol4 SHRSL ek E st
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In Figure 1.21, you can see that the GPS measurements are spread far apart from each other,
but they are all relatively close to the actual location of the restaurant at the center of the
target. This indicates a low precision, high accuracy measuring system. However, in Figure
1.22, the GPS measurements are concentrated quite closely to one another, but they are far
away from the target location. This indicates a high precision, low accuracy measuring system.
Finally'®, in Figure 1.23, the GPS is both precise and accurate, allowing the restaurant to be

located.
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Figure 1.21 A GPS system attempts to locate a restaurant at the center of the bull’s—eye. The black dots represent
each attempt to pinpoint the location of the restaurant. The dots are spread out quite far apart from one another,
indicating low precision, but they are each rather close to the actual location of the restaurant, indicating high

accuracy. (Dark Evil)

39 121 GPS7E TR o] Fodel) Gl Age Foeln guth AL AES Aol 9112 Aaks] A4ty Yd
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Figure 1.22 In this figure, the dots are concentrated close to one another, indicating high precision, but they are

rather far away from the actual location of the restaurant, indicating low accuracy. (Dark Evil)

a9 1.22 o] 2gelAE HEol Az 77to] 28 QoA AUETt 52 T 4 Gy shAt HEo] AAl
Aol YA M= ds] Ee] oA ol Aetert WEe #D & gy (Dark Evil)

Figure 1.23 In this figure, the dots are concentrated close to one another, indicating high precision, and they are

very close to the actual location of the restaurant, indicating high accuracy. (Dark Evil)

I 123 o TYNAE FEo| AR skl Bel Qlold AUES %22 AAY & gich el HE0] 44
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Uncertainty / 23

The accuracy and precision of a measuring system determine the uncertainty of its
measurements. Uncertainty is a way to describe your confidence in your measured value, or

the range of values that would be consistent with the data. If your measurements are not very



accurate or precise, then the uncertainty of your values will be very high. In more general®

terms, uncertainty can be thought of as a disclaimer for your measured values. For example, if
someone asked you to provide the mileage on your car, you might say that it is 45,000 miles,
plus or minus 500 miles. The plus or minus amount is the uncertainty in your value. That is,
you are indicating that the actual mileage of your car might be as low as 44,500 miles or as
high as 45,500 miles, or anywhere in between. All measurements contain some amount of
uncertainty. In our example of measuring the length of the paper, we might say that the length
of the paper is 11 inches plus or minus 0.2 inches or 11.0 + 0.2 inches. The uncertainty in a
measurement, A, is often denoted as §A("delta A"). The actual value of the object may not be
within the range given by the measurement and its uncertainty. In our paper length example
above, a new set of measurements”’ might produce a length of 14.0 % 0.2 inches, with the
uncertainty based on the accuracy or our reading or repeated measurements. We would also,
however, conclude that either one of our measurement sets is incorrect due to an offset” in the
measurement process in that set, or our measurement correctly identifies that we are
measuring different papers. In the former case, the discrepancy between the measured value

and the actual value is called a systematic error.
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2. The skill of the person making the measurement
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3. Irregularities in the object being measured

3. 27401 el B

4. Any other factors that affect the outcome (highly dependent on the situation)
4. 270] AL FE GE RE 24 (] 27 H58)

In the printer paper example uncertainty could be caused by: the fact that the smallest division
on the ruler is 0.1 inches, the person using the ruler has bad eyesight, or uncertainty caused by
the paper cutting machine (e.g., one side of the paper is slightly longer than the other.) It is
good practice to carefully consider all possible sources of uncertainty in a measurement and

reduce or eliminate them.
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Percent Uncertainty / 28 £

One method of expressing uncertainty is as a percent of the measured value. If a measurement,

A, is expressed with uncertainty, 84 the percent uncertainty is

2o g waske P F oPE 243k we e e AU wef azke 233kl
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% uncertainty (M&& I %) = 6TAxlOO%.



WORKED EXAMPLE / 4lA|

Calculating Percent Uncertainty: A Bag of Apples
w28 BoE ALtel]: At g B4

A grocery store sells 5-1b bags of apples. You purchase four bags over the course of a month

and weigh the apples each time. You obtain the following measurements:
— Week 1 weight: 4.8 Ib
— Week 2 weight: 5.3 1b
— Week 3 weight: 4.9 b
— Week 4 weight: 5.4 1b

oPEA At 5 wHeES gAe] Fot B

)
Aol 2718 ek 184 W AT o83 2

- 13 3 A 48wk =

2 Fob 4 BAE FujshA o

27 AR s 3meE
S35 AR 49 meE
- 45 A R 54 meE

You determine that the expected weight of a 5 Ib bag has an uncertainty of +0.4 1b. What is
the percent uncertainty of the bag’s weight?

5] Jgigte] 5 wheEQl BAo Bahesl £0.4 Fetety ARS WHEUL 24
SA0] w-g B dntel7ha?

STRATEGY

ek

First, observe that the expected value of the bag’s weight, A4, is 5 Ib. The uncertainty in this
value, 84, is 0.4 1b. We can use the following equation to determine the percent uncertainty

of the weight

A B FAL 71 A7F 5 weEde #]ls) FAR. o] el ==kql sA= 0.4
steEdUYTh FA9 WiEE S8 =g o] 95 o Ale 28 & sy

% uncertainty (Ni-& 5 %) 8TAxlOO%.

Solution




29|

Plug the known values into the equation
Fol7 gh= i Aol did s HAlsUH
(* e =g EH)

mlm

22 X100% = 8%.

% uncertainty (W& %)

Discussion

Eo

We can conclude that the weight of the apple bag is 5 1b + 8 percent. Consider how this
percent uncertainty would change if the bag of apples were half as heavy, but the
uncertainty in the weight remained the same. Hint for future calculations: when calculating
percent uncertainty, always remember that you must multiply the fraction by 100 percent. If

you do not do this, you will have a decimal quantity, not a percent value.
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Uncertainty in Calculations / A4t A] €& 118]5}7]

There is an uncertainty in anything calculated from measured quantities. For example, the area
of a floor calculated from measurements of its length and width has an uncertainty because the
both the length and width have uncertainties. How big is the uncertainty in something you
calculate by multiplication or division? If the measurements in the calculation have small
uncertainties (a few percent or less), then the method of adding percents can be used. This
method says that the percent uncertainty in a quantity calculated by multiplication or division
is the sum of the percent uncertainties in the items used to make the calculation. For example,
if a floor has a length of 4.00 m and a width of 3.00 m, with uncertainties of 2 percent and 1
percent, respectively, then the area of the floor is 12.0 m” and has an uncertainty of 3 percent
(expressed as an area this is 0.36 m?, which we round to 0.4 m” since the area of the floor is

given to a tenth of a square meter).
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For more information on the accuracy, precision, and uncertainty of measurements based

. 2 .. . .
upon the units of measurement™, visit this website.
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Precision of Measuring Tools and Significant Figures / &3 =9
AUES fE 24

An important factor in the accuracy and precision of measurements is the precision of the
measuring tool. In general, a precise measuring tool is one that can measure values in very
small increments. For example, consider measuring the thickness of a coin. A standard ruler
can measure thickness to the nearest millimeter, while a micrometer can measure the thickness
to the nearest 0.005 millimeter. The micrometer is a more precise measuring tool because it
can measure extremely small differences in thickness. The more precise the measuring tool, the

more precise and accurate the measurements can be.

S0 Aot AU SHA F8% 84 F St 54 =79 dEEdYH dRtd o=
AU A =4 vl Al STk #te SAE & e =S EEUHh dE =0l
A FAE Al A A HAL. A<l 2= FAE 2 EH g7 SAHTS = e
HHd, wtolazulHe FAE 0.005 Z2ng @de7bA] S4E 4 sy vrela=nlETL
S22 A2 57 Aole SAY  gleBr ¢ HUd SA =4E & 5 sy 54
=7 g o gUsta FestA S = sy

When we express measured values, we can only list as many digits as we initially measured
with our measuring tool (such as the rulers shown in Figure 1.24). For example, if you use a

standard ruler to measure the length of a stick, you may measure it with a decimeter” ruler as

22 « ”» . ” ”» . . ”» . »

of measurements”2} “based upon the units of measurement” = T “accuracy”, “precision”, “uncertainty” 25E
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2 “Jecimeter” 7} o} @} “centimeter” Q1 2 Z&Uth, wWabA “centimeter” 2t 7HEsT B i g )


https://openstax.org/l/28precision
https://www.learner.org/series/learning-math-measurement/

3.6 cm. You could not express this value as 3.65 ¢cm because your measuring tool was not
precise enough to measure a hundredth of a centimeter. It should be noted that the last digit in
a measured value has been estimated in some way by the person performing the measurement.
For example, the person measuring the length of a stick with a ruler notices that the stick
length seems to be somewhere in between 36 mm and 37 mm. He or she must estimate the
value of the last digit. The rule is that the last digit written down in a measurement is the first
digit with some uncertainty. For example, the last measured value 36.5 mm has three digits, or
three significant figures. The number of significant figures in a measurement indicates the
precision of the measuring tool. The more precise a measuring tool is, the greater the number

of significant figures it can report.
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Figure 1.24 Three metric rulers are shown. The first ruler is in decimeters and can measure point three decimeters.
.. . 24 . . . .. -
The second ruler is in centimeters long™ and can measure three point six centimeters. The last ruler is in millimeters

and can measure thirty—six point five millimeters.
22 124 Sl A A A7k Tlel ek 3 WA AR dAEE B9 Ho] 91 0.3 dAnlHetT 25e &

& Urth = WA A= AEln|E &2 Ho] 917 3.6 AEn ety =435 4 94Ut ubx|ut 2t Waul g T2
sjo] 913 36.5 Welvl et S 4 slgeh,

oAM= wt

N
30,
i)
T
o

it
4o
e

# 71012 Vet Zlo] o & “long™ S Wl & 2 24yt o



Zeros / A0

Special consideration is given to zeros when counting significant figures. For example, the
zeros in 0.053 are not significant because they are only placeholders that locate the decimal
point. There are two significant figures in 0.053—the 5 and the 3. However, if the zero occurs
between other significant figures, the zeros are significant. For example, both zeros in 10.053
are significant, as these zeros were actually measured. Therefore, the 10.053 placeholder has
five significant figures. The zeros in 1300 may or may not be significant, depending on the
style of writing numbers. They could mean the number is known to the last zero, or the zeros
could be placeholders. So 1300 could have two, three, or four significant figures. To avoid this
ambiguity, write 1300 in scientific notation as 1. 3x10°, Only significant figures are given in
the x factor for a number in scientific notation (in the form xx10”). Therefore, we know that 1
and 3 are the only significant digits in this number. In summary, zeros are significant except
when they serve only as placeholders. Table 1.4 provides examples of the number of significant

figures in various numbers.
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Number Significant Rationale
<Al Figures =+A
$3 57

1.657 4 There are no zeros and all non—zero numbers are always
significant.
0o] gl=tl, 00] obd K= =2t A frasy.

0.4578 4 The first zero is only a placeholder for the decimal point.
A WA 02 A4S St A EAAY B Y

0.000458 3 The first four zeros are placeholders needed to report the data
to the ten—thoudsandths place.
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2000.56 6 The three zeros are significant here because they occur

between other significant figures.
A7 A Al 719 02 thE fra A Areloll Lo A frasiyoh

45,600 3 With no underlines or scientific notation, we assume that the

last two zeros are placeholders and are not significant.
wzolu} Tekd wo|Ho] HEE A gt d st 0 £ A
Zte] BA|ZFo| 1 G ashA] okehal Zh ey,

15895000 |7 The two underlined zeros are significant, while the last zero is

not, as it is not underlined.
WEo] Toj4 9t 0 % A SEEYTh W skAe o

W=o] oF T10]A4 Qo] §- 8514 5Tt

Tlo

5457 X |4 In scientific notation, all numbers reported in front of the
10"” multiplication sign are significant
wpeha B7HoA Al 719 o] B oAb frasiyh
6.520 X |4 In scientific notation, all numbers reported in front of the
107 multiplication sign are significant, including zeros.
wob T2l B4 715 90 BE S §aRIT 0%
EZehgyrt
Table 1.4
x14

Significant Figures in Calculations / A4t A] & 52} 112517]

When combining measurements with different degrees of accuracy and precision, the number
of significant digits in the final answer can be no greater than the number of significant digits
in the least precise measured value. There are two different rules, one for multiplication and

division and another rule for addition and subtraction, as discussed below.

A2 b2 Are ool AUnE /K ZARSS AT ), AF Av] 54 24 A
Vg ARES} Fe S SE 24 AT B 5 gadth T b A 02 FHo|
iUtk shbs BT U] Bk Aolw thE Stk ST WAle] Bk AUt
ool A o] E& AL,
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1. For multiplication and division: The answer should have the same number of significant
figures as the starting value with the fewest significant figures. For example, the area of a

circle can be calculated from its radius using 4 = mr’. Let us see how many significant



figures the area will have if the radius has only two significant figures, for example,

r = 2.0 m. Then, using a calculator that keeps eight significant figures, you would get

L 38T eAlY A% AT RE 24 ASk fE 24 A7 VS AL A4S Y K&
57t Aot Zotok Gtk oS Sol U9 Holk MAZS IW 4 = m” FHLS BEHA
TG 5 gtk r = 2.0m o] WAE GE £k ARl Wold f& £t
duht @eA LobEAlth 1k §E £A5 8 BAT 5 Uk AWE gt

okg2] grol thgut.
A=’ = (3.1415927..) X (2.0m)’ = 12.5663708 m".

But because the radius has only two significant figures, the area calculated is meaningful

only to two significant figures or
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even though the value of 7 is meaningful to at least eight digits.
W% gkel 5 44} 147} A4 8ol e g,

2. For addition and subtraction: The answer should have the same number places (e.g. tens
place, ones place, tenths place, etc.) as the least—precise starting value. Suppose that you buy
7.56 kg of potatoes in a grocery store as measured with a scale having a precision of 0.01 kg.
Then you drop off 6.052 kg of potatoes at your laboratory as measured by a scale with a
precision of 0.001 kg. Finally, you go home and add 13.7 kg of potatoes as measured by a
bathroom scale with a precision of 0.1 kg. How many kilograms of potatoes do you now
have, and how many significant figures are appropriate in the answer? The mass is found by

simple addition and subtraction:

2. QAT WA o] B Aate] Apsla (ol Ao A=, dof Ahe], A ot AA A )7t
M ARETE W2 A #he Al Zotok dun ntEd A JE =7 0.01 kgl A==
A 7.56 kgl AAE ATl sfEAlnh. 29 ths AEE7E0.001 kgl A== A|A 6.052
kgol A5 Addol Fi Al slsFAlt, vpAere 2 Hofl 7R A-EE 0.1 kgl oA
A& A 13.7 kgol AAE F7HAHIL sfgAlv. oAl 2 =31 e] gApr) Qlar A3t
8 A e duprt AR SRR et s A o = ARkS A 4 sy

7.56kg — 6.052kg + 13.7kg = 15.208 kg

The least precise measurement is 13.7 kg. This measurement is expressed to the 0.1 decimal
place, so our final answer must also be expressed to the 0.1 decimal place. Thus, the answer

should be rounded to the tenths place, giving 15.2 kg. The same is true for non—decimal



numbers. For example,

Vg BUET e AL 137 kUt o] SR 254 obd) 3 Aei7iA) gonz
4% ATE 254 ofef A A7 glelof Fuirk. wetd Atz B Anke oo
a5 BA AelA wredsor shu, 2w 152 kgol WU ok A4E
SRR QT o2 SR The Tt gt

6527.23 + 2 = 6529.23 = 6529.

N

We cannot report the decimal places in the answer because 2 has no decimal places that

would be significant. Therefore, we can only report to the ones place.

20]& FEY TRt 25 A gleBg Ao gy ofo] A V1Y & fls U

watA] o] Aa7iARt 2715 4 A&

It is a good idea to keep extra significant figures while calculating, and to round off to the
correct number of significant figures only in the final answers. The reason is that small
errors from rounding while calculating can sometimes produce significant errors in the final
answer. As an example, try calculating 5,098 — (5.000)x(1,010) to obtain a final answer
to only two significant figures. Keeping all significant during the calculation gives 48.
Rounding to two significant figures in the middle of the calculation changes it to
5,100 — (5.000) x (1,000) = 100, which is way off. You would similarly avoid rounding
in the middle of the calculation in counting and in doing accounting, where many small

numbers need to be added and subtracted accurately to give possibly much larger final

numbers.
ARE e e f8 £A4E nejshn, A% ATl AT Aot 88 27 A4 ol
T@* tﬂﬂh Z1o ] %—S—‘JE} 0]%474] St ol AAE IO A HhEH OHH ‘j”ﬂo}L 75.}3

5,098 — (5 000)><(1 010)E ALA F& =27 & A9t Qe 23

AL B A BE FR AE S 480] LUt ALt Fofl BHEE 6l A %i =S
2712 YHEW 5,100 — (5.000) x (1,000) = 10022 HIUr} o] T4 Hiojd glo]x
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Significant Figures in this Text / & DA oA 2] 58 <A

In this textbook, most numbers are assumed to have three significant figures. Furthermore,
consistent numbers of significant figures are used in all worked examples. You will note that
an answer given to three digits is based on input good to at least three digits. If the input has

fewer significant figures, the answer will also have fewer significant figures. Care is also taken



that the number of significant figures is reasonable for the situation posed. In some topics,
such as optics, more than three significant figures will be used. Finally, if a number is exact,

such as the 2 in the formula, ¢ = 2mr, it does not affect the number of significant figures in a

calculation.
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WORKED EXAMPLE / 9A

Approximating Vast Numbers: a Trillion Dollars
AN =2 4517 — 1= 99
The U.S. federal deficit in the 2008 fiscal year was a little greater than $10 trillion. Most of

us do not have any concept of how much even one trillion actually is. Suppose that you
were given a trillion dollars in $100 bills. If you made 100-bill stacks, like that shown in
Figure 1.25, and used them to evenly cover a football field (between the end zones), make an
approximation of how high the money pile would become. (We will use feet/inches rather
than meters here because football fields are measured in yards.) One of your friends says 3
in., while another says 10 ft. What do you think?

20089 QA= 7IE m= A AR 102 9¥E 2w "H3dsdo 8 diFES
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Figure 1.25 A bank stack contains one hundred $100 bills, and is worth $10,000. How many bank stacks make
up a trillion dollars? (Andrew Magill)

a9 1.25 23] gl =oh2 100 g AH#H7F W 7| gl Ao, 1 7FA]= 10,000 @YYt dehvt B2
250 Sl E=rvhdo] 1= g2l & 7] 9o 2837187 (Andrew Magill)

STRATEGY
e

When you imagine the situation, you probably envision thousands of small stacks of 100
wrapped $100 bills, such as you might see in movies or at a bank. Since this is an
easy—to—approximate quantity, let us start there. We can find the volume of a stack of 100
bills, find out how many stacks make up one trillion dollars, and then set this volume equal
to the area of the football field multiplied by the unknown height.

oJH g AR s B bt 2380A & 4 e AA ™ 100 29 2[5 100 o] &
22 il 3 A7F okt | e 2 AJU o] 2 7HESH] IR R o7 A AlZS) —”i/\lEP.
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Solution

Eo|

1. Calculate the volume of a stack of 100 bills. The dimensions of a single bill are
approximately 3 in. by 6 in. A stack of 100 of these is about 0.5 in. thick. So the total
volume of a stack of 100 bills is

1. 100 &9 A= ool Fulg Alibs) 2AlQ. Ao & ] A7]+= di=f 3 1A X 6
AAJUE. o] AHE 100 & #od FA7F oF 0.5 A AUt w=2hA 100 22 =] ohd
shol T 0= o Zs Yyt

volume of stack (F}'&2] §-3]) = length (7} =) xwidth (M Z)xheight (°]),
volume of stack (t}'&9] ¥-3]) = 6in. X3 in. X0.5 in,




volume of stack (th'&e] §-3]) =9 in’.
2. Calculate the number of stacks. Note that a trillion dollars is equal to $1x10", and a
stack of one~hundred $100 bills is equal to $10,000, or $1><104. The number of stacks you
will have is
2. thire] 52 Autel BAR. 12 el 1x10" Do} SYsta, 100 D2 257} 100 7A
Q& THEE 10,000 B3, B 1x10" B9 HAgS 71ola] FAQ. 24 2 Evhiel
Mo vt Zsyh

$1 x 10" (a trillion dollars)(1% &)

8
= 1x 10 stack uhy .13
$1><104per stack (CH23) stacks (1‘4— E) ( )

3. Calculate the area of a football field in square inches. The area of a football field is
100ydx50yd, which gives 5, OOOydz. Because we are working in inches, we need to convert
square yards to square inches

3. AAET A7 WAS AEQA] @9z A4t BHAle. nAS A7) WAl
100 ydx50 yd2 5,000 yd" Ut Q1] ©9|2 ¢S 5l 9loma AFor=g AFA 2
v of okt

Area (BH) = 5,000yd" x <L x e x L2l B _ 6 480, 000in.,
Area (1 4)~6x10°in.”.
This conversion gives us 6x10%in.” for the area of the field. (Note that we are using only one

significant figure in these calculations.)
gkl A7) wAo] 6x10°in” 02 gt (o] ARt shte] 5 LAt ALgst T
U= Tl FAR)
4. Calculate the total volume of the bills. The volume of all the $100-bill stacks is
4. 2|H &) FHOE Ao BAIQ. 100 22 A obd AA o] £l oh33 25Ut
jtZ::k (E}%})st stacks (Fh) = 9x10° in.”
5. Calculate the height. To determine the height of the bills, use the following equation
5. =0l AAtsl HAl Q. A 9] Fol& F517] siA tha A2 ARl HAlL.
volume of bills (X H 2] F-3]) = area of field (74 7]% ) xheight of money (=] ¥=°])

l bills (A ¥ 2] -3
Height of money (91 %) = LSy

M_ 1.33x10%n.
6% 101

Height of money (2] *0]) = 1x10° in. = 100 in.
The height of the money will be about 100 in. high. Converting this value to feet gives
=98] #ol& °F 100 1AL AYYt. o] gh2 W E= Hestd v g5yt
100 in. x—L— = 8.33 ft~8 ft.

Height of money (9] ¥°]) =

Discussion
E9]

The final approximate value is much higher than the early estimate of 3 in., but the other

early estimate of 10 ft (120 in.) was roughly correct. How did the approximation measure




up to your first guess? What can this exercise tell you in terms of rough guesstimates versus
carefully calculated approximations?

FE IS 27 FAEUQA 3 dAEG Y AR, gE 27
AAD= dheF ghatssynr. 240l oe2o] Aol A5t gtel o 2l
AAE Soff e T4 gt A2 WA AFeE A4S vl wstd 7ol o 4 b a?

In the example above, the final approximate value is much higher than the first friend’s early

[o

estimate of 3 in. However, the other friend’s early estimate of 10 ft. (120 in.) was roughly
correct. How did the approximation measure up to your first guess? What can this exercise

suggest about the value of rough guesstimates versus carefully calculated approximations?

A AN FHF 22 A HA D] 27] 549 3 A Eoks 24 FU Y HE
A9 27] A5 10 W EA120 2D+ theF byt S58ko] of2lZo] Agol A5t
ol ofgA Fedstduta? o dJAE Sl tis FAt w3 Ad= HA At 2485k

Zpolol s TS B2l & 4 LE7Ha?

Graphing in Physics / &2]stollA] 1= 12]7]

Most results in science are presented in scientific journal articles using graphs. Graphs present
data in a way that is easy to visualize for humans in general, especially someone unfamiliar
with what is being studied. They are also useful for presenting large amounts of data or data

with complicated trends in an easily—readable way.

One commonly—used graph in physics and other sciences is the line graph, probably because it
is the best graph for showing how one quantity changes in response to the other. Let’s build a
line graph based on the data in Table 1.5, which shows the measured distance that a train
travels from its station versus time. Our two variables, or things that change along the graph,
are time in minutes, and distance from the station, in kilometers. Remember that measured

data may not have perfect accuracy.

Z2)sha} ThE }et Hofo] 4 5] AHE LTI F shhs A T AU ofu} of @ Sa
ThE Safol nfe} o B WS AY 2 by Jeimebq 13 A Z&Ych &
QU= HlolEE A7t ool 2el A Az ZHT AYUL olF uio
JHEE 2ejEAT 5 d4E th2d] webe agme] uhel wsks AL, Bow A
Az AzulE R 2AF o4 219 A Unt, Z4H Holel o] Aotrrt ghuisi o}
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Time (min) | Distance from Station (km)

AZEGE) | FHollA &A < A2 (km)

0 0
10 24
20 36
30 60
40 84
50 97
60 116
70 140

Table 1.5

x15

1. Draw the two axes. The horizontal axis, or x—axis, shows the independent variable,
which is the variable that is controlled or manipulated. The vertical axis, or y—axis, shows
the dependent variable, the non—manipulated variable that changes with (or is dependent
on”) the value of the independent variable. In the data above, time is the independent
variable and should be plotted on the x—axis. Distance from the station is the dependent

variable and should be plotted on the y—axis.

5 £ Q4R teE B xEHS EPESE Yehjed), ol
Ut AzZ, e yEe FEU4E Ushibd, o zAEA o
w40] gkl wheh W 9] FolHelA Ak
A 87Q) Al F5MS2 yZo] A Fojof gtk

2~
s
i

12 i orE o

=

]

2. Label each axes on the graph with the name of each variable, followed by the symbol for
its units in parentheses. Be sure to leave room so that you can number each axis. In this
example, use Time (min) as the label for the x—axis.

of
2

2. o] 7 Sofl Zp W] o] B2 A2 §, I gl 289 E A1 1 ¢t sigste BE
= (] (o}
= T1—

detlie Jlee HoAe. 7t =
QAL AT ()2 xFel Ho.

3. Next, you must determine the best scale to use for numbering each axis. Because the time
values on the x—axis are taken every 10 minutes, we could easily number the x—axis from 0
to 70 minutes with a tick mark every 10 minutes. Likewise, the y—axis scale should start low

enough and continue high enough to include all of the distance from station values. A scale

5 o]z ]o|t}" etz HA]

o

N0z moli NS 2A) oA ek AT



from 0 km to 160 km should suffice, perhaps with a tick mark every 10 km.

719e o 7 ARt 2A1de AsioF gyt x50l Yetl=
O
=

B8R xFole I 0=2ollA 7027H4] 107 4 o=
AN

AT 107 A= e
FASHE Hud. mREHR yS 2L $80] W2 AHFEH S22 w2 AHA
Aol Hollq &2 72 AF7F ZetEolof gyt 0 kmF-H 160 km7k#] o 27 Dol
SOk, a2 ofvh 10 kmutet J2H E Adyn

In general, you want to pick a scale for both axes that 1) shows all of your data, and 2)
makes it easy to identify trends in your data. If you make your scale too large, it will be
harder to see how your data change. Likewise, the smaller and more fine you make your
scale, the more space you will need to make the graph. The number of significant figures in
the axis values should be coarser than the number of significant figures in the

26
measurements.

1o
$8 27 W47t ZAHZS] $8 22 AR Fofok gt
4. Now that your axes are ready, you can begin plotting your data. For the first data point,
count along the x—axis until you find the 10 min tick mark. Then, count up from that point
to the 10 km tick mark on the y—axis, and approximate where 22 km is along the y—axis.

Place a dot at this location. Repeat for the other six data points (Figure 1.26).

4. o)A o Tigt 2Heje] et dlole Qe Azkste BUh 2 WA dolg X
47] 98] x%2 whet 10 £ 7hel7le o] tehd tzka LAYtk ke, 1 e
10 km 708 o] 14 y%& et b4 22 km AFE S48 BAL. 1
e M oA a. U] 6 79 HlolE EIEL FAsH YA HoMa. (1 1.26)
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Train Motion
160
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80 [ ]
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Distance from station (km)
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(‘Train Motion’& ‘7]2F2] o|%’, ‘Distance from station (km)' 2 ‘oA &2l A7 (km)’, ‘Time (min)’ & ‘A7t

()& e e
Figure 1.26 The graph of the train’s distance from the station versus time from the exercise above.
9 1.26 9 A1 E vt oz AlZhel| wet 7|27 ol #2191 712 & ekl 2

5. Add a title to the top of the graph to state what the graph is describing, such as the y—axis
parameter vs. the x—axis parameter. In the graph shown here, the title is train motion. It

could also be titled distance of the train from the station vs. time.

5. 2efIo} 2ol UEhiEA] QeF7] ) vE W o x& Wae} 2e ARg Tgm
ol 1A, ofy] mole Iz ARol Vel o5 Y of A VI
Aol g9 712 T A7 0T AL % YUt

6. Finally, with data points now on the graph, you should draw a trend line (Figure 1.27).
The trend line represents the dependence you think the graph represents, so that the person
who looks at your graph can see how close it is to the real data. In the present case, since the
data points look like they ought to fall on a straight line, you would draw a straight line as
the trend line. Draw it to come closest to all the points. Real data may have some
inaccuracies, and the plotted points may not all fall on the trend line. In some cases, none of

the data points fall exactly on the trend line.

6. ntAEte g, oA Izl dloly ERJIESC] 9lernz FAHS ok . (1
1.27) FA2 #Rlo] Azt 2 2ge] Mg F5BAE Bofsyn. o8 g e®
AYPnE He A2 I FEHBAC A dlolHE dupy & WrdsteAE gotd 4
JEUT. FA At = dlole ZIES] 24 Aol e AAH Hol7] WjZof iAoz
FAAE 24 9‘43} RE A 7PE 7P fiAstER 7 BA|Q. AA glolE7t o=
e FAee —rE A, BAE HEol BF FAA ol A o= = sy omet
dlole] ZJAEL HJ&s] A1 Al fle 4k 7 A5y
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Figure 1.27 The completed graph with the trend line included.

13 1.27 FAA0] x3H s I

Analyzing a Graph Using Its Equation / 4] 2.2 12| B X3}7]

One way to get a quick snapshot of a dataset is to look at the equation of its trend line. If the

graph produces a straight line, the equation of the trend line takes the form

dolEAES W) melsls W F shli 2449 Ag Shelsls AUt #me)
2 A)4d0] 2 4dol® 1 Ale] Fee ka3t g4t

y = mx + b.

The b in the equation is the y—intercept while the m in the equation is the slope. The
y—intercept tells you at what y value the line intersects the y—axis. In the case of the graph
above, the y—intercept occurs at 0, at the very beginning of the graph. The y-intercept,

therefore, lets you know immediately where on the y—axis the plot line begins.

9l Al = be yEHolA, § Aol = mE 71&7dYH. yEHE siF Ao] T yakol A
yET BASFEAS e, 9 Tejme] A yAwe] 002 Tgmel Wl A e
FFUTh yHHS B, A, y5 o] = FRoflA o] Alst=AE Hi= & 4 /lE U .

The m in the equation is the slope. This value describes how much the line on the graph moves

up or down on the y—axis along the line’s length. The slope is found using the following

equation

g Aol me 718719, of ghe 49| Z

Ak} Sloke 2 &4 oA E HelFUth, 7187t kg AL Fo) Tehck
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In order to solve this equation, you need to pick two points on the line (preferably far apart on
the line so the slope you calculate describes the line accurately). The quantities Y, and Y,
represent the y—values from the two points on the line (not data points) that you picked, while

X, and X_represent the two x—values of the those points.

o] 42 EelW A 9lolA F e Betok FUrhelgold 4 9ol A We] Wol HES BeA,
AR 712717k e Aets) wrgatA sk zlo] E&UTh. Bed v oty & oefo] 12 A

919 £ Aol EAE obdyrh)el yghe bl x o x & 1 ¥ del @k
Uk e,

What can the slope value tell you about the graph? The slope of a perfectly horizontal line will
equal zero, while the slope of a perfectly vertical line will be undefined because you cannot
divide by zero. A positive slope indicates that the line moves up the y—axis as the x—value
increases while a negative slope means that the line moves down the y—axis. The more
negative or positive the slope is, the steeper the line moves up or down, respectively. The slope

of our graph in Figure 1.26 is calculated below based on the two endpoints of the line

2712 I 2z g RO & 5 Ye7ba? s £
g3 449 AL 002 UrE Ao| Brlkslna 7]e/E A4
oFolw xgto] E7He wf Ao] y& Waor 9 b wi, 7]87)7
Mol y& epog ol Ut 718717 ¥ uf 242 18w o
o Zhups] 912 A okl gtk 29 1.260) Qe 2] 7]
FRe o AN AL thest 2oyt

olt
do "o
o > rlo

\l
ne,
o =

m = v,7r _ (80 km)—(20 km) _ 60km _ _ 20km
- XX’ ~ (40 min—10 min) ’ ~ 30min’ - min

Equation of line (35 419] 4]): y = L2km 4

min)

Because the x axis is time in minutes, we would actually be more likely to use the time t as the

independent (x—axis) variable and write the equation as

xFS 2 W99 AZHo|BE AZHiime) UEE 18 SHUMSE)E sto] A2 theat 2ol
#i R 97} AARE U B AYU

!20km t + 0.

min)

The formula y = mx + b only applies to linear relationships, or ones that produce a straight
line. Another common type of line in physics is the quadratic relationship, which occurs when

one of the variables is squared. One quadratic relationship in physics is the relation between



the speed of an object and”’ its centripetal acceleration, which is used to determine the force
needed to keep an object moving in a circle.”” Another common relationship in physics is the
inverse relationship, in which one variable decreases whenever the other variable increases. An
example in physics is Coulomb’s law. As the distance between two charged objects increases,
the electrical force between the two charged objects decreases. Inverse proportionality, such

the relation between x and y in the equation

= Zgo] vho PACIY HeF & 9%
B WS 5 S ABSHe ol% BAYUT Zejste
= FA A& BAZ, oHE 240 AeEL
e AN Y AgEUTh BYote] B8] Uehtt E o2 gAE &9 B2 02 Wt

Hha) ] EA =
Y=+

for some number k, is one particular kind of inverse relationship. A third commonly—seen
relationship is the exponential relationship, in which a change in the independent variable
produces a proportional change in the dependent variable. As the value of the dependent
variable gets larger, its rate of growth also increases. For example, bacteria often reproduce at
an exponential rate when grown under ideal conditions. As each generation passes, there are
more and more bacteria to reproduce. As a result, the growth rate of the bacterial population

increases every generation (Figure 1.28).
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Linear Quadratic

¥ =mx+b y =al+bx+c

12 1 & 50 e

10 1 positive m 40 1

8.

6 304

4 1 i 204
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(a) (b)

Inverse Exponential
lO:y y=alx
8-
61
4.
2
°C : i & & 1w o 1 & & & 1

(] )
Cx 2= A =of thg A2 ofef) Aol 54t
Figure 1.28 Examples of (a) linear, (b) quadratic, (c) inverse, and (d) exponential relationship graphs.

19 1.28 () AF A, (b) o2k BA, (o) =2 BA, (d) A= TA L L of|A]

Using Logarithmic Scales in Graphing / 12| o] 271 AA| A &-&-5}7]

Sometimes a variable can have a very large range of values. This presents a problem when
you're trying to figure out the best scale to use for your graph’s axes. One option is to use a
logarithmic (log) scale. In a logarithmic scale, the value each mark labels is the previous
mark’s value multiplied by some constant. For a log base 10 scale, each mark labels a value
that is 10 times the value of the mark before it. Therefore, a base 10 logarithmic scale would
be numbered: 0, 10, 100, 1,000, etc. You can see how the logarithmic scale covers a much
larger range of values than the corresponding linear scale, in which the marks would label the
values 0, 10, 20, 30, and so on.

7ha o] grel Meh v We ¢ dlsddh ole JHE o
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If you use a logarithmic scale on one axis of the graph and a linear scale on the other axis, you
are using a semi—log plot. The Richter scale, which measures the strength of earthquakes, uses
a semi—log plot. The degree of ground movement is plotted on a logarithmic scale against the

assigned intensity level of the earthquake, which ranges linearly from 1-10 (Figure 1.29 (a)).

Jjmrt g 22 21 AAYo|al thE &2 4

A7) Z g Yetl= dsly f2E 19 o
A= 20 AAGGNA BAE=H, 120
21719 o] tf-g@dytt. (19 1.29 (a)

@ 27|2dolwl Aml2T Tefmetn Eyut,
Aml 2 28 mst g E Y 2do] $4/¢)
AQe g o= 1614 107447} E9lz A4

If a graph has both axes in a logarithmic scale, then it is referred to as a log—log plot. The
relationship between the wavelength and frequency of electromagnetic radiation such as light
is usually shown as a log—log plot (Figure 1.29 (b)). Log—log plots are also commonly used to

describe exponential functions, such as radioactive decay.

Jjmel & 5 REt 2 AAYeH i ddiEs BO-20 O Zr EYHUTL 9 Z2
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Figure 1.29 (a) The Richter scale uses a log base 10 scale on its y—axis (microns of amplified maximum ground
motion). (b) The relationship between the frequency and wavelength of electromagnetic radiation can be plotted as

a straight line if a log—log plot is used.
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WORKED EXAMPLE / 9|A|

Method of Adding Percents: Shingling Your Roof

HEE 957 B4 — A 271

A series of shingles are used to protect the roof of a home. Using a measuring tape, you
measure one shingle and find its dimensions to be 44 cm by 100 cm. Knowing that your
measurements are not perfect, you estimate an uncertainty of £0.5 cm. Following the

method of adding percents, what is the area of the shingle, including uncertainty?

Agde W Age B 98 olo] ReldA AgEULh 24T AgN 24D
A%de] 2717k 44 em x 100 cmety SEAGUT. 20| hista] stk 744 ofd
2IEE +05 cm2 FAASUT WEL H5r] BAS AgsE 2Ede wuhe
232 Bge) A Ankelzha?

STRATEGY

A

While calculating the area of the shingle is straightforward (44 cm x100 cm = 4400 cmz),
determining the percent uncertainty is more challenging. In order to use the method of

adding percents, you must first calculate the percent uncertainty of each measurement.

A8Yo] WAL Tk AL FASIAG (44 cm x100 cm = 4400 cm”), WEE BT S
Tote A2 o 7idEsdn. #iEg oyl HAS 27 ddiAe 4 S84 WiEe

=S5 WA Alitsor e

Solution

29|

Length % Uncertainty (42 #1828 B5t5): 25100% = 25x100% = 1.1%

4
Width % Uncertainty (7}2 928 28H5): 24 x100% = —=-x100% = 0.5%

Adding Percents (-2-& ©o}7]): 1.1% + 0.5% = 1.6% uncertainty("™ =& &%)
Area of the Shingle (X549 2] Ho)): 4400 cm’+1. 6%

Note that this uncertainty can also be expressed in metric terms.

o] Lotest wE BeRE 71 & 9L 7o) FAL,

1. 6%x4400 cm” = 70.4 cm”




Area of the Shingle (A]29 2] W2]): 4400470. 4 cm’

Discussion

Eo)

Knowing the percent uncertainty of a shingle can help a contractor determine the number of
shingles needed, and therefore the cost, of roofing a new home. Consider how using smaller
shingles would affect this uncertainty, and what role this would play in the cost estimation

process.

VIRTUAL PHYSICS / 7H4+ &gt

Graphing Lines

T zof A 127

In this simulation you will examine how changing the slope and y—intercept of an equation
changes the appearance of a plotted line. Select slope—intercept form and drag the blue
circles along the line to change the line’s characteristics. Then, play the line game and see if

you can determine the slope or y—intercept of a given line.”

of AlEdloldoME A9 7&7|et yEHE MASHH A= A9 Bgol ofE A HEAE

otz APYtt. (slope-intercepty T2 AET F, vt 5= A2 weh =254 A9
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T UEA] dotEA 2.
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How would the following changes affect a line that is neither horizontal nor vertical and has
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a positive slope?

eyt e WSt Lok 93 LZo|AE ofn 7|L7|7F kol AL ojEA

e
1. increase the slope but keeping the y—intercept constant
1. 71&71= S7HZIAE y 2 H S T & F7]
2. increase the y—intercept but keeping the slope constant
2. yd¥He SRR 7127 dd® 57

a. Increasing the slope will cause the line to rotate clockwise around” the y—intercept.
Increasing the y—intercept will cause the line to move vertically up on the graph without

changing the line’s slope.

i)

a. 71&718 S7HZIH Aol yHHES 7|Eo R AA WEer & AU yEES
SR Aol el A Zler)7h WehA] 2 Al 4 WEeR 92 &FE

b. Increasing the slope will cause the line to rotate counter—clockwise around the
y—intercept. Increasing the y—intercept will cause the line to move vertically up on the

graph without changing the line’s slope.

b. 71&71€ S7MI7IHE Aol ydHE 7Eo= WA dds
Aol =zl 7]2717F WshA] 2 Al 4 WFe= gz &=k

c. Increasing the slope will cause the line to rotate clockwise around the y—intercept.
Increasing the y—intercept will cause the line to move horizontally right on the graph

without changing the line’s slope.

c. 71=&71E 57}7\17]‘11 Aol ydHE 7IEor AA Bger 5 AUt yH
S7HAZIH o] T mAfoll A 71&717F ¥ishR] ¢ HFom eE&Fo= 0
AU,

ﬁ re
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d. Increasing the slope will cause the line to rotate counter—clockwise around the
y—intercept. Increasing the y—intercept will cause the line to move horizontally right on

the graph without changing the line’s slope.

d. 719718 Z7H719 Aol yHBL 71F0R WAA BFOR E AYUch yIHS
Z7HA719 Ao] Jejmagel A 712717 Mk e A £ WPOR Q8RO E o5
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Check Your Understanding / 231 24|

12. Identify some advantages of metric units.
12. v[E R &1 2 72 A= A=A 8.
a. Conversion between units is easier in metric units.
a. The] ZF Wk nlEE Thert o sy
b. Comparison of physical quantities is easy in metric units.
b. rlE ¥ T2 E8&S Hlwshd syt
c. Metric units are more modern than English units.
c. B ©917F = T E T o dhA
d. Metric units are based on powers of 2.
d. nlE s @9l 29] AAlEel 716y

13. The length of an American football field is 100 yd, excluding the end zones. How long is

the field in meters? Round to the nearest 0.1 m.

13, W]4%7 3714 0] Bol AEES Aelshe 100 ok= Utk A %7149 Qol7} njH 2
AutelA & FHHALL. A% SA AHelol A ureHstA e

a.10.2m
b.91.4m
c. 109.4 m
d.328.1m

14. The speed limit on some interstate highways is roughly 100 km/h. How many miles per
hour is this if 1.0 mile is about 1.609 km?

7}@6}% o]% /\]—(—1} H E]»?E]O]Z]% :[Lﬁ]' ﬂ

a. 0.1 mi/h

b. 27.8 mi/h



c. 62 mi/h
d. 160 mi/h

15. Briefly describe the target patterns’” for accuracy and precision and explain the differences
between the two.

rEs] 7leskal,

i

15, Aotesl FUEs} BEGS 2 oA ojud So] 9]
g2 e] zfol & A 5HA 2.
a. Precision states how much repeated measurements generate the same or closely similar
results, while accuracy states how close a measurement is to the true value of the
measurement.
2 AUEE WEE4 ZHY 0 5ol Juph TAY HlaeAE ehi v, FeEe
=93¢0] 27 2] Agte] Frh} e A S e e
b. Precision states how close a measurement is to the true value of the measurement, while
accuracy states how much repeated measurements generate the same or closely similar
33
result™.
 AUELE 233k0] 24| Pkl Aokt AkeAE vehhe v, Aokl v
279 o] ZHEo] Aok} 2o weAE tepg e,
c. Precision and accuracy are the same thing. They state how much repeated measurements
generate the same or closely similar results.
¢ YRS AUTE L Aoz vEal 29 v Bl uhh BAY HPAE
Ureb e,
d. Precision and accuracy are the same thing. They state how close a measurement is to the

true value of the measurement.
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