Cross-origin Prefetch + SplitCache

Author: Dominic Farolino <domfarolino@google.com> <dom®@chromium.org>
Last updated: September 23rd, 2019 (Post-TPAC)

Status: Done [PUBLIC]

Chromium bug: https://crbug.com/939317

Spec bug(s)/PRs:
e https://github.com/w3c/resource-hints/issues/82
e https://github.com/whatwg/html/pull/4115
e https://github.com/whatwg/fetch/pull/881

Related documents:

kinuko@'s saner caching model for prefetch
horo@'s initial exploration

kinuko@'s early project doc

domfarolino@'’s single-key eligible thoughts/doc
Potassium’s HTTP Cache Threat Model

kinuko@'s speculative loading doc

Table of Contents

Motivation/Background
Use-cases

Proposals
Prefetch Request Changes
X Single-key-eligible Prefetches
X Separate Prefetch Cache
X On-the-fly URLLoaderFactory Creation
Main Resource Implementation Design
PprefetchURLLoaderService routing

Main Resource Implementation Design
Recursive Prefetch Design

(AHTTP Cache Match-Time Logic

Testing Plan

Prefetch + SplitCache
Prefetch Request Tests

Privacy Concerns
Future Work

mailto:domfarolino@google.com
mailto:dom@chromium.org
https://crbug.com/939317
https://github.com/w3c/resource-hints/issues/82
https://github.com/whatwg/html/pull/4115
https://github.com/whatwg/fetch/pull/881
https://docs.google.com/document/d/1uj8ZFQRCx0upzQ1sD-YFQ2UCl8PGDDBpWqLtup1KMVQ/edit#heading=h.5we5squgde
https://docs.google.com/document/d/1V0KisYRsyMqdynJxUZhBeu6ym32OdvXfYRCvVu43XV8/edit
https://docs.google.com/document/d/1k8gqc-bHyR_oKJbdbUvWfyp4mTjYJ1MqinULv3Q1Sls/edit
https://docs.google.com/document/d/1ANBcwA5hwLzRllkwDFzI6pWyQzzgeHxB3HtydtKedLU/edit
https://docs.google.com/document/d/1NsFL_8xYAzWitpytwv57njf3lSMj5B4BOri3iXTxnHM/edit
https://github.com/kinu/speculative-loading

Motivation/Background

Currently, many websites such as Google Search make use of prefetching cross-origin
resources to speed up future navigations. This works because prefetched resources are
stored in the HTTP cache, which is globally shared among all origins. This global sharing has
introduced side-channel attacks where one origin can detect whether another has loaded a
resource via a timing-attack on the HTTP cache.

The HTTP Cache Partitioning Explainer doc describes this in more detail, as well as the
proposed mitigation of double-keying the cache, a project called SplitCache. This effectively
disallows resources loaded and stored into the HTTP cache by one origin to be served
from the cache when a different origin requests them. Consequently, this breaks the main
use-case for cross-origin prefetch. This document covers some proposals to retain the
current behavior of cross-origin prefetch for navigations in the midst of SplitCache, while
also discussing various privacy and compatibility implications.

Use-cases

We use the "as’ attribute on the <link> element as a signal to distinguish prefetching main
resources (as=document) and prefetching subresources (as=anythingElse). With this
distinction, there are several use-cases for <link rel=prefetch> to consider:
1. Prefetched cross-origin main resources reused on cross-origin navigations
2. Prefetched cross-origin subresources reused on same-origin pages
3. Prefetched cross-origin main resources reused as same-origin subresources
(<iframes>)
4. Prefetched cross-origin subresources reused on cross-origin navigations to those
subresources
5. Prefetched cross-origin subresources reused on cross-origin pages as subresources
a. There are no plans to support this, due to privacy & tracking concerns

The first 4/5 would be good to support, the first 2/5 being the highest priority.

Proposals

This section contains several proposals for the work this project requires. The first outlines
changes that need to prefetch request in Blink from a privacy perspective. The next four
are candidates for making cross-origin prefetches able to be matched from HTTP cache on
future navigations. The last section covers proposed changes to the HTTP cache to support
matching cross-origin prefetch resources.

https://github.com/shivanigithub/http-cache-partitioning

Prefetch Request Changes

Spec issue Resource-Hints#82 indicates that to support cross-origin prefetch in a

double-key cached world, prefetch requests should have the following properties:
e Redirect mode: manual/error

Credentials mode: same-origin

Mode: kNoCors

Service-workers mode: none

Referrer policy: no-referrer

Origin: client origin
o yhirano@ included this point just for clarity

In Blink, most of these properties are determined in PreloadHelper::PrefetchlfNeeded().
The ResourceRequest’'s mode_, credentials_mode_, and referrer_policy_ are all influenced by
attributes that are taken into account here. We'll want to ensure that these properties are
instead unaffected by attributes (i.e., prefetch requests should never be sent with a
‘Referer’ header, regardless of the ‘referrerpolicy” attribute). In order to introduce these
changes, we should gate them behind flags that we’ll enable at around the same time that
kSplitCacheByNetworklsolationKey gets enabled by default.

These changes to the request properties could affect existing behavior, and are not yet
spec'd. We should experiment with these changes and discuss data at TPAC 2019. For now,
I've published:

Intent-to-Implement

Chromestatus entry

Questions to clarify proposed spec changes

Request for TAG review

If a developer supplies values for any of these attributes, and we do not honor them, what
should we do:
e Fail the request + display a console warning indicating why the request failed
o +yhirano indicates this is the “safest” approach (preventing uncredentialed
responses from matching with credentialed requests)
e Display a console warning indicating some attributes are not being considered, and
continue with the request as usual

Major CLs
e Introduce PrefetchRedirectError flag
e Prefetch redirect histogram
e PrefetchPrivacyChanges flag + no "Referer” header

https://github.com/w3c/resource-hints/issues/82
https://fetch.spec.whatwg.org/#concept-request-redirect-mode
https://fetch.spec.whatwg.org/#concept-request-credentials-mode
https://fetch.spec.whatwg.org/#request-service-workers-mode
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy
https://fetch.spec.whatwg.org/#concept-request-origin
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/loader/preload_helper.cc?q=PrefetchIfNeeded&l=477
https://cs.chromium.org/chromium/src/net/base/features.h?q=kSplitCacheByNetworkIsolationKey&l=41
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/bSMOY-evrV4/tMnXA_0yEgAJ
https://chromestatus.com/feature/5280299309072384
https://github.com/w3c/resource-hints/issues/82#issuecomment-514880455
https://github.com/w3ctag/design-reviews/issues/398
https://chromium-review.googlesource.com/c/chromium/src/+/1725554
https://chromium-review.googlesource.com/c/chromium/src/+/1743237
https://chromium-review.googlesource.com/c/chromium/src/+/1781303

X Single-key-eligible Prefetches

One option to support all use-cases described above would be to mark prefetched
resources as single-key-eligible. In other words, the resource would not be subject to the
exclusive single-origin partitioning that SplitCache naturally introduces. Instead, it would
support matching via a classic single-key. A deeper description of this concept can be found

in the Single-Key-Eligible proposal doc + slides.

While this solution would satisfy all of our needs without implementing an independent
prefetch cache, it essentially requires a refactoring of the HTTP cache such that it is less like
a hash table whose keys/values are:

{<top_frame_origin, RequestURL>: Resource}
...to instead resemble:
{<RequestURL>: [Resource, AllowedOriginsList, SingleKeyEligible=true | false]}

The AllowedOriginsList is a list of origins that can reuse this resource (similar to the
partitioning key). If an origin wants to reuse the resource associated with <RequestURL>
but does not appear in the AllowedOriginsList, it can only do so if both of the following are
satisfied:

e The cache entry's SingleKeyEligible flag is true

e The request is for a top-level navigation

This naturally introduces a form of deduplication that the current HTTP cache does not do,
which is a change that should probably considered separately. Due to the significant
changes required for this solution, it is not currently an option, though theoretically it
satisfies the above use-cases.

Y Separate Prefetch Cache

Another option is to store prefetch resources in a separate single-keyed cache,
independent of the traditional HTTP cache. This is the approach Apple is looking into.
Long-term it might be worth investing into, but the significant effort required in the midst
of a simpler solution that gets us most of what we want (below) puts it on the backburner.

More information on the origins of this proposal can be found in Kinuko's early project doc.
This solution would also satisfy all of the above use-cases.

https://docs.google.com/document/d/1ANBcwA5hwLzRllkwDFzI6pWyQzzgeHxB3HtydtKedLU/
https://docs.google.com/presentation/d/1yv_cOYWh1QEq_EdYcCEL3LlKDof7hHijiPYLgf6tqec/edit
https://docs.google.com/document/d/1k8gqc-bHyR_oKJbdbUvWfyp4mTjYJ1MqinULv3Q1Sls/edit#heading=h.uomzz7ya4mtm

Y On-the-fly URLLoaderFactory Creation

A cross-origin prefetched main resource can only be reused on navigation if it is placed in
the cache partition corresponding to its origin (not the parition corresponding to its
requestor). One way to make this happen is to fetch these resources with a new
URLLoaderFactory whose NetworklsolationKey is modified for the cross-origin prefetch.

Summary: When the renderer sees a cross-origin prefetch, instead of routing it to its
ChildURLLoaderFactoryBundle::prefetch_url_loader_factory_ like usual, it creates a new
Remote<URLLoaderFactory> and passes the corresponding PendingReceiver to the
browser. The message instructs the browser to create a new URLLoaderFactory whose
NetworklsolationKey is the cross-origin itself. The browser creates the factory, registering it
with the PrefetchURLLoaderService. The renderer can immediately use this remote factory
to fetch the prefetch. We'll want to reuse this factory for preload-on-prefetch requests too,
because they should be keyed under their parent prefetch’s origin. Therefore, we should
save this factory to the renderer’s bundle for later reuse.

These ad-hoc factories should be used for any cross-origin prefetch or cross-origin
preload-on-prefetch requests destined for a particular origin. Since these factories are
essentially tied to an origin (via the NetworklsolationKey), it seems reasonable to introduce
a CrossOriginPrefetchLoader map to URLLoaderFactoryBundle or ChildURLLoaderFactory
to store them. Currently ChildURLLoaderFactoryBundle::CreateLoaderAndStart has
special-prefetch-logic that sends prefetch requests to prefetch_loader_factory_. We would
extend this logic to detect cross-origin prefetches, and consult the
CrossOriginPrefetchLoader map instead (or create a new entry). Same-origin prefetches will
behave as normal, being routed through the existing prefetch_loader_factory_.

Security concerns: The browser is setting the NetworklsolationKey of the request based
on information directly obtained from the renderer. A compromised renderer could tell the
browser to create a URLLoaderFactory with an arbitrary NetworklsolationKey, and could
insert entries into arbitrary cache partitions. This may not be too serious for main
resources because their reuse is restricted to top-level navigations (see HTTP Cache
Match-Time Logic), but is much more problematic for preloads-on-prefetches resources.

Preloads-on-Prefetch: Only the renderer should need to keep track of whether a
ResourceRequest is a preload-on-prefetch. When it comes across a preload-on-prefetch, it
should mark in such a way that ChildURLLoaderFactoryBundle routes it to the correct
factory in the CrossOriginPrefetchLoader map. This factory will correspond to its parent
prefetch’s origin. After this, no further work needs to be done by the browser/networks
service.

Pros:

https://cs.chromium.org/chromium/src/content/renderer/loader/child_url_loader_factory_bundle.cc?q=%22(request.resource_type+%3D%3D+static_cast%3Cint%3E(ResourceType::kPrefetch)%22&sq=package:chromium&g=0&l=229&rcl=93d85d110ccdbc002de0beeeaf015500364e14be

Network service does not need to be modified
Complexity is scoped to renderer & browser communication. Everything else “just

works”
e Preloads-on-prefetch requests only require additional routing by the renderer

Cons:
e Overhead of IPC and URLLoaderFactory creation for every new cross-origin prefetch
e Not secure enough of a proposal for preloads-on-prefetch requests. This is the
reason we cannot go with this proposal.

Main Resource Implementation Design

Process boundary
| Browser Renderer

PreloadHalper::PrefetchifNesded
Mark blink:-ResowrceRequest as PreferchMainResource

*

& WebURLLoaderimpl:GatloadFlagsForWebURLRequast
If (PrefetchMainResource && crossOriging
Ipad flag |= LOAD_RESTRICTED _PREFETCH

RFHI:CreateCrossOriginPrefetchLoaderiongin, receiver) majam:FrameHost ChildURLLoaderFactoryBundle:CreateloaderAndStart
+ Create blink-URLLozderFactoryBundie with | & ® i iprefetch && prefetchainResource &6 crossOriging
:il::|.!.u||: loader lactary’s NetworklsalationkKey == FrameHostl->CreateCrossOriginPrefetchLoaderiongin, ..
Drigin

» PrefetchURLLoaderSendce-GetFactoryibundle)

PrefetchURLLoaderService:-Createloader AndStart ! # ChildURLLoaderFactaryBundle::CreateloaderfndStart
At this point we're using the ULF that the renderer # Add new Remote<URLLoaderFactony= to
Instructed RFHI o create.) CrossOrignPrefetchLoser Map
il [LOAD_RESTRICTED PREFETCH) » Feich the cross-origin preletch with it

DCHECKIcross_origing

Y

See HTTF Cache Match-Time Logic section for
how LOAD_RESTRICTED_PREFETCH is used

(Figure illustrating new flow of cross-origin main resource prefetches)

Proof-of-concept CL: http://crrev.com/c/1735366

Renderer => Browser IPC
The renderer’'s ChildURLLoaderFactoryBundle needs to communicate to the browser that it

wants a new URLLoaderFactory, specifically for prefetching, with a non-default
NetworklsolationKey. | propose we extend mojom::FrameHost like so:

CreateCrossOriginPrefetchLoaderFactory(
url.mojom.Origin cross_origin,

http://crrev.com/c/1735366

pending_receiver<network.mojom.URLLoaderFactory> factory_receiver

)

CreateCrossOriginPrefetchLoaderFactory() would be called from
ChildURLLoaderFactoryBundle::CreateLoaderAndStart for cross-origin prefetches. The
method would be implemented by RenderFrameHostImpl, which would create a new
URLLoaderFactory for subresources, in a way similar to what we do now. It would register
this loader factory with the PrefetchURLLoaderService.

Creating the URLLoaderFactory with non-default NIK

Presently, RenderFrameHostimpl::CreateNetworkServiceDefaultFactoryAndObserve is used
to create subresource loader factories for the renderer. This delegates to
CreateNetworkServiceDefaultFactorylnternal, passing a private network_isolation_key_ to
the RenderProcessHostImpl to create the factory. Therefore, all subresource factories have
the same NIK. | propose adding a NetworklsolationKey parameter to
CreateNetworkServiceDefaultFactoryAndObserve, so that we can pass in our own
NetworklsolationKey when we need to, and default to the RenderFrameHost's otherwise.

Introduce CrossOriginPrefetchLoaderMap

When the renderer messages the browser (its frame host) to create a new
URLLoaderFactory for a cross-origin prefetch, it should store the corresponding
Remote<URLLoaderFactory> for later-use. | propose introducing
CrossOriginPrefetchLoaderMap to ChildURLLoaderFactory, whose type would be
std::map<url::Origin, mojo::Remote<network::mojom::URLLoaderFactory>>. It would store
prefetch URLLoaderFactories associated with a given origin. The renderer consults this map
when a cross-origin prefetch is encountered. If no factory for a given origin exists, it must
must message its frame host to create a new one.

Marking a ResourceRequest as main-resource prefetch
We've opted to use "as=document’ as a tentative signal for whether a cross-origin prefetch
is intended to be used as a main resource. These requests should be routed through
newly-created URLLoaderFactories in the above map.

1. Detect as=document in PreloadHelper::PrefetchlfNeeded

a. Set anew property on blink::ResourceRequest indicating that the prefetch is
a main resource
2. Convert this new property to a new load flag.

WebURLRequest::GetloadFlagsForWebURLRequest can be responsible for this.

(V4PrefetchURLLoaderService routing

The above proposal creates a new URLLoaderFactory for each distinct cross-origin prefetch.
These factories are stored in the renderer, which makes them more vulnerable and puts

https://cs.chromium.org/chromium/src/content/browser/frame_host/render_frame_host_impl.cc?q=%22if+(!pending_default_factory)+%7B%22&sq=package:chromium&g=0&l=5212&rcl=2e11302d0805c32aa31530b0f89b3eca69b98eca
https://cs.chromium.org/chromium/src/content/browser/frame_host/render_frame_host_impl.h?q=%22net::NetworkIsolationKey+network_isolation_key_;%22&sq=package:chromium&g=0&l=2377&rcl=2e11302d0805c32aa31530b0f89b3eca69b98eca
https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/exported/web_url_request.cc?q=%22int+WebURLRequest::GetLoadFlagsForWebUrlRequest()+const+%7B%22&sq=package:chromium&g=0&l=438

unnecessary trust in an untrusted process. A lighter-weight and more-secure approach is
to create a single URLLoaderFactory per frame, that only handles cross-origin prefetches.

The renderer can indicate that a network::ResourceRequest is a cross-origin prefetch and
wishes to be cached specially. This requires the ability for the renderer to express that a
network::ResourceRequest was prefetched with "as=document’, and is intended for
top-level navigations. We could use LOAD_MAIN_FRAME_DEPRECATED to express this,
however it is deprecated. Instead we'll introduce a new load flag
LOAD_RESTRICTED_PREFETCH.

When the PrefetchURLLoaderService consumes the network::ResourceRequest, it can
check for the LOAD_RESTRICTED_PREFETCH flag. If the flag is present, the request must
meet the following (security) conditions:

e [s across-origin request

e Redirect mode is kError (when the PrefetchRedirectError feature is enabled)

e C(Credentials mode is kNoCors

e | OAD_CAN_USE_RESTRICTED_PREFETCH flag is not set

If any of the above conditions are not met, the request should be completed with an error
response immediate; this could indicate a compromised renderer tampering with the
request. We don't want to DCHECK here, because that allows a compromised renderer to
crash the browser process.

The PrefetchURLLoaderService will route this prefetch request to a special factory it
maintains in its per-frame BindContext. This factory should be created lazily when
necessary, as not all frames will have cross-origin prefetches. The factory will be initialized
with no NetworklsolationKey.

Instead, PrefetchURLLoaderService populates the prefetch’s NetworklsolationKey. This is
because it should be cached under the partition corresponding to the prefetch’s
cross-origin, and the PrefetchURLLoaderService is “trusted” and knows the target partition.

https://cs.chromium.org/chromium/src/net/base/load_flags_list.h?q=%22//+The+network+stack+should+not+have+frame+level+knowledge.++Any+pre-connect%22&sq=package:chromium&g=0&l=66&rcl=319fe37221e214e44ae93867ac4256632df712a1
https://cs.chromium.org/chromium/src/content/browser/loader/prefetch_url_loader_service.cc?q=PrefetchURLLoaderService::BindContext&sq=package:chromium&g=0&l=31&rcl=757b89a9d1e9eeba418167df8c1dc43eef0b703f

Main Resource Implementation Design

Process boundary

| Browser \ Renderer
)

T
I
1 o PreloadHelper:PrefetchifNeeded
Y if (as=document) {
I Mark request as "PrefetchiaybeForTopLevel May”
i !
1
‘, ® WebURLLoaderimpl::GetLoadFlags|...|Request
! if (MaybeForTopLevelMay && crossOrigin)
. load_flag |= LOAD_RESTRICTED_PREFETCH
muojom::ULF
PrefetchURLLService::CreateloaderAndStart g . # ChildULFBundle:CreateloaderAndStart
& if (LOAD_RESTRICTED PREFETCH)] Go through prefetch_loader_factory_ as narmal
CreateCrossOriginLoaderFactony() f
Route request through the special ,'
URLLoaderFactory i
II.l
RFHI:CreateCrossOriginLoaderFactory [] ‘*-I
- CreateMetworkhenice Df."faultF-?lEEDl}'[. J N
Call with empty Networklsolationkey +
FactaryParams that gets created has no ’..
Metwarklsolationkey \
i
]
PrefetchURLLoader::PrefetchURLLoader .rf
e if (LOAD RESTRICTED _PREFETCH), check: L
Perform security checks W ¥

e Populate |trusted_network_isolation_key |
AThis will be used by the special factony

See HTTP Cache Match-Time Logic section
for how LOAD_RESTRICTED_PREFETCH is used

(Figure illustrating new flow of cross-origin main resource prefetches)

Recursive Prefetch Design

A key part of this work is ensuring that preload header requests on prefetch responses
(we'll call them recursive prefetches) are cached with the parent prefetch. The renderer is
responsible for parsing the "Link™ header for these requests, and using frame-specific
information (like viewport size) to inform these requests.

We debated on initiating recursive prefetch requests from the browser process instead of
the renderer, because the browser process knows the correct NetworklsolationKey that
these should be fetched with. However, since the requests need frame-specific information
(e.g., for imagesrcset/imagesizes), it makes more sense to continue to let the renderer fetch

them.

We cannot simply pass the correct NetworklsolationKey to the renderer to fetch these
requests with, because we cannot trust the renderer to maintain the integrity of the key (it
is “untrusted”). Instead, after the renderer fetches the request, we need to re-associate the

https://github.com/whatwg/html/pull/4048

recursive prefetch request with the correct NetworklsolationKey in the browser process.
We do so by introducing a map to PrefetchURLLoaderService of the following shape:
{UnguessableToken = NetworklsolationKey}. When we get a prefetch response, we add
the correct NetworklsolationKey to the map via generated token. We give the renderer this
token, and recover the correct NIK when renderer fetches the request.

Process boundary

PURLLcader [PURLLocaderService J \ | Renderer

[
I
I
Responsa from 1
natwork service v
L] I
Get UnguessableToken g ;"
1. Generate UnguessableToken !
2. Creale correct 5\
Metworkisolationkey »
3. token_map(loken] = NIK
4, Returmn UnguessableToken f
L o !
Attach token to ,1
prefetch rasponss forwarding_client_]

e]
Usual resource response steps:
PreloadHalper::LoadLinksF ramHeadear

!

Propagata UnguessableTaken
to recursive prefetch request

P i —
- = -

I
- .
mojom:ULF
L &5 t Fetch recursive prefetch
Recover comect NIK i
from token_map "1
!
i
Fetch with !

sl BindContext::cross_origin_factory

Pros:
e Cheap: Less overhead than the earlier proposal; no new IPC messages
e Efficient: We're not creating N cross-origin prefetch loader factories for N different
cross-origin prefetches. Instead we're reusing a single “special” frame-bound
URLLoaderFactory for all cross-origin prefetches
e Secure: Relies on the renderer as little as possible
Cons:
e Complexity is somewnhat less tightly-scoped; changes are not scoped to the
renderer, but would likely require renderer + browser changes

Major CLs

CL 1730572 - CreateNetwork!...] should accept a NetworklsolationKey
CL 1735366 - Main resource cross-origin prefetch + SplitCache
CL 1775646 - Simplify prefetch + cross-origin prefetch logic

CL 1772896 - Prefetch'’s preload headers are cached correctly
See Testing Plan for tests

(VAHTTP Cache Match-Time Logic

The above proposal describes changes that need to be made when a cross-origin prefetch
request is made. This section describes changes that need to be made to when a
cross-origin prefetch is to be matched from the HTTP cache.

Same-origin prefetch resources can be matched from the cache as usual; no changes are
necessary. However, cross-origin prefetches sitting in the HTTP cache must only match
top-level navigation requests, for privacy reasons. Therefore, it is necessary to be able to
distinguish a cached cross-origin prefetch from others.

HttpResponselnfo
Add a new flag |restricted_prefetch|. This flag should be set when an HttpResponselnfo’s
properties, such as |unused_prefetch|, are set. We should have some logic like so:

HttpNetworkTransaction::Start (...) {

if (request_->load_flags & LOAD_RESTRICTED_PREFETCH) {
DCHECK(request_->load_flags & LOAD_PREFETCH);
response_.restricted_prefetch = true;

}

This indicates that a prefetch has been handled specially in some way, and its reuse should
be restricted to requests that can explicitly use it (see below).

LOAD_CAN_USE_RESTRICTED_PREFETCH

We can mark a request that should be able to use restricted prefetches by introducing a
new LOAD_CAN_USE_RESTRICTED_PREFETCH flag. This should only be set for top-level
navigation requests. We can do so with the following logic:

CreateResourceRequest() {

if (request_info->is_main_frame) {
load_flags |= net::LOAD_CAN_USE_RESTRICTED_PREFETCH;

https://chromium-review.googlesource.com/c/chromium/src/+/1730572
https://chromium-review.googlesource.com/c/chromium/src/+/1735366
https://chromium-review.googlesource.com/c/chromium/src/+/1775646
https://chromium-review.googlesource.com/c/chromium/src/+/1772896
https://cs.chromium.org/chromium/src/content/browser/loader/navigation_url_loader_impl.cc?q=%22std::unique_ptr%3Cnetwork::ResourceRequest%3E+CreateResourceRequest(%22&sq=package:chromium&g=0&l=171

Limiting the use of restricted prefetches
To limit the reuse of cache entries marked as |restricted_prefetch |, we'll want the following

cache logic:

HttpCache::Transaction::DoCacheReadResponseComplete() {

if (response_.restricted_prefetch &&
l(effective_load_flags_ & LOAD_CAN_USE_RESTRICTED_PREFETCH)) {
TransitionToState(STATE_SEND_REQUEST);
return OK;

}

Main CLs for this work:
e Introduce //net RESTRICTED PREFETCH load flags
e Stop toggling prefetch values before/after write

Special Cases
This section attempts to address some special cases regarding the reuse of prefetched

resources:
1. Should prefetches (with LOAD_PREFETCH) be able to reuse prefetched responses
marked as restricted?

v No. If we allowed this, origins would potentially be able to determine
whether other origins have prefetched a particular resource, which is a
privacy leak

2. What should the correct behavior be when a cross-origin main-resource document
is prefetched, and attempted to be reused by a cross-origin subresource instead of a
navigation?

v Evict the restricted prefetch from the cache, go to the network to retrieve it.
Ensure that the newly-written entry is not marked as “restricted”. Right when
this happens essentially we should forget that the prefetch was restricted or

even exists

https://cs.chromium.org/chromium/src/net/http/http_cache_transaction.cc?q=%22int+HttpCache::Transaction::DoCacheReadResponseComplete(int+result)+%7B%22&sq=package:chromium&g=0&l=1470
https://chromium-review.googlesource.com/c/chromium/src/+/1735159
https://chromium-review.googlesource.com/c/chromium/src/+/1760632

Testing Plan

Prefetch + SplitCache

Before the work described by this doc, the following prefetch content_browsertests fail
with the SplitCacheByNetworklsolationKey feature enabled (6 tests total):
PrefetchBrowserTest.CrossOrigin/
PrefetchBrowserTest.CrossOriginWithPreload/
*PrefetchBrowserTest.CrossOriginSignedExchangeWithPreload/1
*SignedExchangePrefetchBrowserTest.PrefetchMainResourceSXG_CrossOrigin/0

Tests that need to be implemented:
e Browsertest: cross-origin document prefetch + cross-origin navigation only
downloads once
Browsertest: cross-origin non-document + cross-origin navigation downloads twice
Browsertest: cross-origin document prefetch + cross-origin iframe downloads twice
o This tests that cross-origin prefetches can only be reused for top-level
navigations
e Browsertest: cross-origin non-document + cross-origin subresource downloads
once
o This tests that cross-origin non-document prefetches are not cached under
the cross-origin resource’s origin, but are usable by the current origin

The above testing scenarios are implemented with CLs:
v Add cross-origin main resource prefetch + SplitCache tests
v Reorganize Prefetch + SplitCache browsertests
v Augment PrefetchBrowserTest.CrossOriginWithPreload

All tests are passing with the implemented proposals \o/

Prefetch Request Tests

e Prefetch + redirect mode (blocked on pending discussion of redirect mode)
v CL 175554
e Prefetch + referrerpolicy
o 'Referer’ header is never sent, regardless of whether the referrerpolicy
attribute exists, and its value
v CL 1781303

https://chromium-review.googlesource.com/c/chromium/src/+/1732869
https://chromium-review.googlesource.com/c/chromium/src/+/1745120
https://chromium-review.googlesource.com/c/chromium/src/+/1780090
https://chromium-review.googlesource.com/c/chromium/src/+/1725554
https://chromium-review.googlesource.com/c/chromium/src/+/1781303

Privacy Concerns

Cross-origin subresources: At this time we have no plans to support cross-origin
subresources being reused on cross-origin pages, due to similar privacy concerns that
prompted double-keyed caching in the first place.

Preloads-on-prefetch: The preloads-on-prefetch behavior cannot expose any more
information than could be exposed by <link rel=prerender>. This is good, however I think it
is not 100% determined that even <link rel=prerender> is totally safe? Furthermore,
Potassium team has expressed concerns with preloads-on-prefetches, and are not totally
comfortable with the concept.

Future Work

This section contains information on future work related to the project explained by this
document.
e Evicting main-resources out of the cache after a certain period of time, or only
allowing next-navigation in some way
e Supporting prefetch reuse on cross-origin navigations to non-document types,
because there isn't a good reason to support this, and non supporting this is an
implementation-detail.
e Consider ‘target attribute for <link> to determine a “safe” origin. Does this buy us
anything? Yoav mentioned Sleevi says it would not let us introduce credentials.
e Lower-level networking work to prevent a cross-origin server from identifying a
client. See this document’s comments from [1]

Post-TPAC update: See kinuko@'s TPAC Prenavigate discussion notes (2019 Sept)

[1]:

mmenke@:

Ok...a.com wants to share user data with b.com. It prefetches, using a cross-origin request,
https://b.com/<user-id>. This uses a socket with https://b.com'’s network isolation key. Then it

also prefetches https://b.com/, which again uses b.com's network isolation key, and the same

https://crbug.com/951810#c7
https://docs.google.com/document/d/1WxzzgGcHLRnFFYv4TkQ2N0IzYnH_UNsVKtwIDeGt9U8/edit
http://a.com
http://b.com
https://b.com/
https://b.com
https://b.com/
http://b.com

socket. Since the requests use the same socket, b.com can include the user ID in the root

document. And thus the user ID is shared cross domain.

In fact, a.com can keep on doing this with different third party domains in the background at its

leisure.

Admittedly, top level redirects with link decoration can do the same thing. Just wondering about

privacy models here.

Actually, if these are for the main frame, they'd have to use first party cookies, so you wouldn't
even need to rely on socket reuse. Just send a user ID.
yhirano@:

- In your example, is the user ID assigned by a.com?

- When does the undesired information sharing happen? Is it when a.commakes a prefetch, or

when the user navigates to b.com?
kinuko@:

Reg: first-party cookies: It's discussed that prefetches should be made without
credentials/cookies (even for main resources. how it should match with navigation requests that

are by default credentialed is still being discussed).

For the socket: do you mean the server side can see the user ID and can associate two requests
from the fact that they share the same socket? Could it imply that prefetches shouldn't basically

use the same socket (and also # of prefetches to one domain should be probably limited ot 1)?
(I don't think we've thought through the implication of socket sharing situations)
mmenke@:

Yes, | mean reusing the socket allows two requests to be associated, even if they're both
uncredentialed. It's basically the link decoration problem, except taking advantage of

preconnects and socket pools, instead of decorating the main frame request.

Limiting requests to a single preconnect and not reusing the socket would fully address the

issue (In combination with only allowing prefetches to be used for the main frame, at least).

http://b.com
http://a.com
http://a.com
http://a.com
http://b.com

	Cross-origin Prefetch + SplitCache
	Motivation/Background
	Use-cases

	Proposals
	Prefetch Request Changes
	❌Single-key-eligible Prefetches
	❌Separate Prefetch Cache
	❌On-the-fly URLLoaderFactory Creation
	Main Resource Implementation Design

	✅PrefetchURLLoaderService routing
	Main Resource Implementation Design
	Recursive Prefetch Design

	✅HTTP Cache Match-Time Logic

	Testing Plan
	Prefetch + SplitCache
	Prefetch Request Tests

	Privacy Concerns
	Future Work

