YEAR 12 - MATHEMATICS

HSC Topic 11 – Methods of Integration, Area

MATHEMATICS ADVANCED

LEARNING PLAN					
Learning Intentions Student is able to:	Learning Experiences Implications, considerations and implementations:	Success Criteria I can:	Resources		
1. understand that 'the area under a curve' refers to the area between a function and the <i>x</i> -axis, bounded by two values of the independent variable					
2. Find approximations to area under a curve using rectangles above and below the curve.	Find an approximation of the area bounded by $y = x^2$, x -axis, $x = 0$ and $x = 4$, by using inscribed and circumscribed rectangles.	Understand how approximate areas can be found through the use of rectangles.			
3. use the notation of the definite integral $\int_{a}^{b} f(x) dx$ for the area under the curve $y = f(x)$ from $x = a$ to $x = b$ if $f(x) \ge 0$					
4.use the Trapezoidal rule to estimate areas under curves	where $f(x) \ge 0$, on the interval $a \le x \le b$, by dividing the area into a given number of trapezia with equal widths. The formula	demonstrate understanding of the formula:			

 demonstrate understanding of the formula: 	$\int_{a}^{b} f(x) dx = \frac{b-a}{2} (f(a) + f(b))$		
	Or combined trapezia may be found using		
	$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} [f(a) + f(b) + 2\{f(x_1) + \dots + f(b) + x_n\}] $ where $a = x_0$ and $b = x_n$, and the are found by dividing the interval $a \le x \le b$ into n equal		
	sub-intervals values of x_0 , x_1 , x_2 ,, x_n are found by dividing the interval $a \le x \le b$ into n equal sub-intervals		
5. use geometric ideas to find the definite integral $\int_{a}^{b} f(x) dx$	Use area of a circle rather than integration to find area bound by $y = \sqrt{r^2 - x^2}$	Show that the area bound by the curve $y = \sqrt{16 - x^2}$ and the line $y = x$ and	
	Eg. $\int_{0}^{2} \sqrt{4-x^2} \ dx$	the y-axis is $\frac{1}{8}\pi 4^2$ units ²	
	$\int_{0}^{10} f(x)dx$ Eg. Determine		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	-4		

6.understand the relationship of position to signed areas, namely that the signed area above the horizontal axis is positive and the signed area below the horizontal axis is negative.		
7. use the formula for a definite integral $\int_{a}^{b} f(x) dx = F(b) - F(a)$, where $F(x)$ is the anti-derivative of $f(x)$, to calculate definite integrals	Understand the relationship between the integral and the primitive function. The fundamental Theorem of Calculus	
 8 Integrate xⁿ by considering integration as the reverse operation of differentiation. 9Use these rules on indefinite integration: (a) Standard forms. (b) ∫ cf(x) dx = c∫ f(x) dx (c) ∫ [f(x)±g(x)] dx = ∫ f(x) dx ±∫ g(x) dx (d) Integrals of products handled by first simplifying algebraically: 	Egs. $\int (2x+1)^2 dx \int x\sqrt{x} dx \int (3x-2)(4x-3) dx$ $\int (\sqrt{x}-1)^2 dx$	

x = a to x = b.

(e) Integrals of quotients: (f) Integrals of the form $\int (ax+b)^n dx$, including fractional values of n such as $\int \sqrt{ax+b} dx$ (g) Differentiate and hence integrate a function	e) Integrals such as $\frac{x^3+5}{x^2}$, $3x+\frac{\sqrt{x}}{x}$ which initially need to be manipulated algebraically. (f) Understand that the rule only works when the function inside the brackets is linear. (g) (i) Differentiate $y=\sqrt{9-x^2}$ with respect to x . (ii) Hence, or otherwise, find $\int \frac{6x}{\sqrt{9-x^2}} dx$.
Area	
Determine that the definite integral	Reinforce that the definite integral represents
$b_{\underline{}}$	the infinite sum of rectangles as $\delta x \to 0$
$\int_{a}^{a} f(x)dx$ gives the exact area bound by	symbol is an elongated S, for sum.
the curve $y = f(x)$ and the x-axis from	Show by a consideration of the area of

Show by a consideration of the area of

rectangles above and below the curve that the

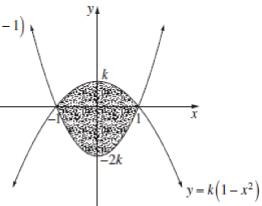
		definite integral gives the exact area under the curve. The exact area is the infinite sum of rectangles where the width $\delta x \rightarrow 0$.		
Perform c	alculations involved in finding	5		
(i)	Areas on one side of the <i>x</i> -axis andbounded by two ordinates, the <i>x</i> -axis and the curve.		Find area enclosed by the x-axis $y = x^3 - 4x^2$ between $x = 1$ and $x = 3$.	
(ii)	Areas for curves which cut the x-axis.		Find area enclosed by the x-axis $y = x^2 - 5x + 6 \text{ between } x = 0 \text{ and } x = 4.$	
(iii)	Areas bounded by 2 curves and which are entirely on one side at the x-axis.		Area bounded by $y = x^2$ and $y = x^3$.	
(iv)	Areas which involve addition and subtraction of integrals.		Area bounded by $y = 2x$ and $y = x^2 - 5x + 6$.	
(v)	Find the area enclosed involving trigonometric, exponential and logarithmic functions.	g. Determine the volume formed when the region bounded by $y = e^x$, $x = \ln 2$ and the coordinate axes is rotated about the x-axis.	e.g. Find area bounded by $y = \sin x$, $y = \cos x$ between $x = \frac{\pi}{4}$ and $x = \frac{3\pi}{4}$.	
		e.g. Determine the volume formed when the region bounded by the x-axis, $y = \frac{1}{x+1}$, $x = 1$ and $x = 4$ is rotated about the x-axis.	HSC QUESTIONS INVOLVING LOGS AND EXPONENTIALS	
		e.g. Determine the area bound by $y = \ln x$ and the x-axis from $x = 1$ to $x = 3$.		

	$A = \int_{1}^{3} \ln x dx$ however the the course. This area should the area of the rectangle suby the <i>y</i> -axis. Area of Rectangle = $3 \times \ln$ Area bound by <i>y</i> -axis $\therefore \text{ Area bound by } x\text{-axis}$	btracting the area bound $\frac{1}{3}$	
HSC Area Questions			

17 The shaded region shown is

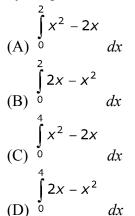
14 enclosed by two parabolas,

each with x-intercepts at x = -1 and x = 1. The parabolas have equations $y = 2k(x^2 - 1)$ and $y = k(1 - x^2)$, where k > 0. Given that the area of the shaded region is 8, find the value of k. $y = 2k(x^2 - 1)$

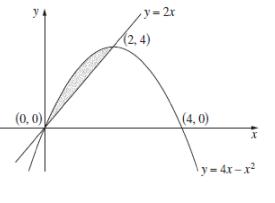


3 Solution

15 7 The diagram shows the parabola $y = 4x - x^2$ meeting the line y = 2x at (0, 0) and (2, 4). Which expression gives the area of the shaded region bounded by the parabola and the line?



1 Solution



15	16a	The diagram shows the curve with equation $y = x^2 - 7x + 10$. The curve intersects the x -axis at points A and. The point C on the curve has the y -coordinate as the y -intercept of the curve. (i) Find the x -coordinates of points A and B . (ii) Write down the coordinates of C . $\int_{0}^{2} (x^2 - 7x + 10) dx$. (iii) Evaluate $\int_{0}^{2} (x^2 - 7x + 10) dx$. (iv) Hence, or otherwise, find the area of the shaded region.	Solution 1 1 2

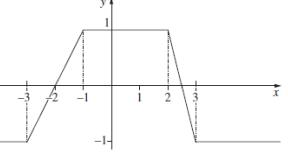
14 12d Solution (d) The parabola $y = -2x^2 + 8x$ and the line y = 2x intersect at the origin and at the point A. (i) Find the x-coordinate of the point A. (ii) Calculate the area enclosed by the parabola and the line. Solution The diagram shows the graphs of the functions $f(x) = 4x^3 - 4x^2 + 3x$ and g(x) = 2x. The graphs meet at O and at T. 1 Find the *x*-coordinate of *T*. (i) Find the area of the shaded regions between the graphs of the functions f(x) and g(x).

13 14d The diagram shows the graph y = f(x).

What is the value of a, where a > 0,

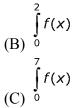
$$\int_{-a}^{a} f(x) dx = 0$$
 so that

1 Solution



12 10 The graph of y = f(x) has been drawn to scale for $0 \le x \le 8$. Which of the following integrals has the greatest value?

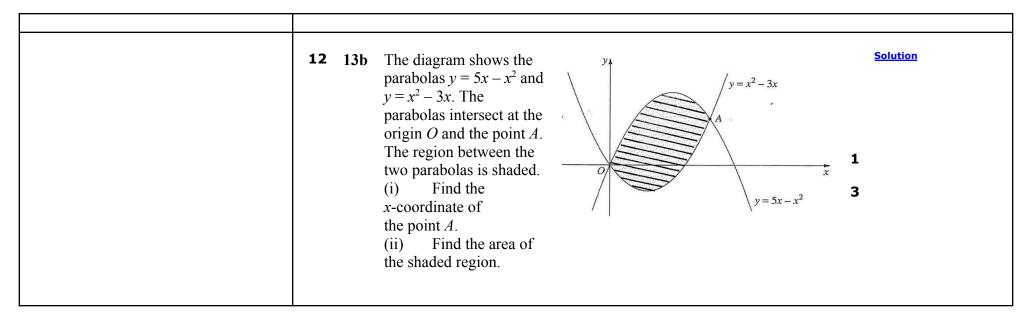
$$\int_{0}^{1} f(x) dx$$



$$\int_{0}^{8} f(x)$$

1 Solution

y = f(x)



Established Goals(Syllabus Outcomes):

- > applies calculus techniques to model and solve problems MA12-3
- papelies the concepts and techniques of indefinite and definite integrals in the solution of problems MA12-7
- > chooses and uses appropriate technology effectively in a range of contexts, models and applies critical thinking to recognise appropriate times for such use MA12-9
- > constructs arguments to prove and justify results and provides reasoning to support conclusions which are appropriate to the context MA12-10