
README

[Public]

PreloadServingMetrics: A Unified Logging
Framework for Preloading Serving Metrics

Author: kenoss@
Input: hiroshige@, nhiroki@, taiyo@, kouhei@, <your-name>@,
Status: Draft
Created: Aug 5, 2025
Updated: Aug 5, 2025

About this document

This document proposes a unified logging framework called PreloadServingMetrics to
capture detailed information about how preloaded resources (specifically from prefetch and
prerender) are used by subsequent navigations. This will provide crucial data for performance
analysis and debugging.

Previous document: 2024Q4 Prefetch Idea Dumps
WIP CL: https://chromium-review.googlesource.com/c/chromium/src/+/6814289

Motivation
There are three view points of existing metrics of preloads (not exclusive):

●​ A. Metrics of execution layer of preloads
○​ Used to get knowing relatively rough statistics of the components.
○​ Preloading.Prefetch.PrefetchStatus: Records prefetch status of

PrefetchContainer.
○​ Preloading.Prefetch.PrefetchDataPipeTeeCloneFailed.<state>: Records failures

of PrefetchDataPipeTee in <state>. Used for launch of PrefetchResubale.
○​ Prerender.Experimental.MatchableHostCountOnActivation: Records counts of

candidates of prerender activation.
●​ B. Per-trigger (trigger suffix)

○​ Used to analyze the triggered preloads and the behavior of the execution stack
with on a per-trigger.

○​ Prefetch.PrefetchContainer.AddedToPrefetchStarted.<trigger-type-and-eagernes
s>: Records duration from prefetch triggered to prefetch started. Used for
PrefetchScheduler and CCT.

https://docs.google.com/document/d/1irs4md5q9C2P5noUogrBqW4YR2GqrRLaVHf2cXtzoO0/edit?tab=t.yoznm4wncuo
https://chromium-review.googlesource.com/c/chromium/src/+/6814289

○​ Prerender.Experimental.ActivationNavigationParamsMatch.<suffix>: Records
reason for prerender header mismatch.

●​ C. Per-navigation
○​ We want to analyze the behavior of navigation that uses preloads and compare it

to ones that don't.
○​ PrerenderPageLoadMetricsObserver
○​ PrefetchServingPageMetrics, but we believe that it is broken (when the

PrefetchServingPageMetricsContainer is registered to PrefetchContainer that is
already entangled with PSPMContainer); and more broken by recent updates of
prefetch stack, e.g. PrefetchReusable.

Note that A vs B is also discussed in

. In this document, tentatively, we Unified Prefetch Cache: Prefetch Time or Serving Time?
follow the term "prefetch time" and "serving time".

We daily debug the preloading stack for experiments. We mainly use A and B with great
ingenuity, but inherently they are points of data. In a difficult situation, we sometimes need a
history of events/data, and want to collect/analyze data with a bias of target situation.

Simple examples:

●​ Investigating what is happening when prefetch matching is timed out, or very slow. (Bad
effect on FCP/LCP.)

●​ Investigating what is happening when prerender initial navigation failed, but prefetch
ahead of prerender looks healthy.

Currently, we lack C for navigation used prefetch, navigation used prerender with prefetch
ahead of prerender, and failed prerender initial navigation.
This document proposes a mechanism to collect logs for them.

Relation to the other projects

Chrome Navigation Metrics Improvements
1. These metrics improvements are breakdown of periods of a navigation. Some of them work
for navigation served by preloads, but some of them don’t. It’s because

●​ Loading of a resource and serving for a real navigation is decoupled.
●​ Navigation can be served by multiple preloads.

○​ Prefetch ahead of prerender and prerender: Prerender initial navigation is served
by prefetch, and a real navigation is served by prerender.

●​ Navigation can involve multiple prefetches.
○​ Prefetch matching is tried per redirect.

https://docs.google.com/document/d/1xzLehbQPyGtFiQSd7PDscUp7gdw6Eblha5shveV_7Ac
https://docs.google.com/document/d/1WUTAA9mbsr__prHyYPFPWKqNQpX0x7HVjoYvqt_n_q0

●​ A prefetch can serve multiple navigation.

2. The purposes are different. PrefetchServingLog aims for comparison and debugging.

So, at least in the short-term, we’ll focus on providing a logging mechanism and variants of
UMAs that work for navigation served by preloads, e.g. NavigationToFirstContentfulPaint.

Future work:

●​ We might add such variants, e.g. NavigationStartToFinish.
○​ For comparison.

●​ We might add variants of type A (in Motivation), e.g. LoaderStartToReceiveResponse.
○​ We make them as variants because the code paths are different. We will use

them to improve loading of preloads.

We don’t have a clear plan to unify them so far.

Requirements
●​ We want to record logs of navigation of these types:

○​ Navigation without preloads, committed.
○​ Navigation with prefetch, committed.
○​ Navigation with prerender (prerender activation), committed.
○​ Prerender initial navigation, failed.

●​ We want to distinguish logs of navigation when:
○​ (Prefetch loading is slow.)
○​ Prefetch matching is slow.
○​ Using prefetch failed somewhere after prefetch matching.
○​ etc.

●​ We want to record
○​ Duration from prefetch is triggered to start of prefetch matching.
○​ etc.

Philosophy
We should distinguish between navigation and NavigationHandle/NavigationRequest:

●​ (Main frame) navigation (in this document)
○​ (Very roughly) A unit having an effect to refresh the contents of WebContents

shown.
○​ Non prerender navigation or (prerender initial navigation +) prerender activation

navigation.
●​ NavigationHandle/NavigationRequest

○​ A unit having an effect to refresh the contents of FrameTreeNode.

None

○​ If a navigation “uses” prerender, there are two
NavigationHandle/NavigationRequest for prerender initial navigation and
prerender activation navigation.

The philosophy of PreloadServingMetrics are

●​ 1. Provide a way to attach data to navigation.
○​ Currently, we have NavigationHandleUserData, but it lacks prerender

support. See below.
●​ 2. Use it for metrics of prefetch/prerender.

Design overview
The core idea is to generate logs within the preloading components at prefetch/prerender time,
and attach them to the NavigationHandle, and then record them as UMA metrics at serving
time.

We can use NavigationHandleUserData (NavigationPreloadLogHolder for our
purpose) to pass them at serving time.

void PrefetchMatchResolver::UnblockInternal(...) {
...
 auto* ftn = FrameTreeNode::GloballyFindByID(ftn_id_); // (*)
 if (!ftn) {
 return;
 }

 NavigationRequest* navigation_request =
ftn->navigation_request(); // (**)
 if (!navigation_request) {
 return;
 }

 auto& nav_preload_log_holder =
 *NavigationPreloadLogHolder::GetOrCreateForNavigationHandle(
 *navigation_request);

 nav_preload_log_holder.AddPrefetchMatchLog(

None

 std::move(prefetch_match_log_));
...
}

+--------------------------+
| Prefetch/Prerender |
| (e.g., PrefetchService, |
| PrerenderHost) |
+--------------------------+
 |
 | 1. Logs are generated
 v
+--------------------------+ +--------------------------+
| PrefetchMatchLog |----->| PrefetchContainerLog |
+--------------------------+ +--------------------------+
 |
 | 2. Logs are collected in NavigationPreloadLog
 v
+--------------------------------+
| NavigationPreloadLogHolder | (Attached to NavigationHandle
as UserData)
| (holds NavigationPreloadLog) |
+--------------------------------+
 |
 | 3. Logs are passed during navigation/activation
 v
+--------------------------------+
| NavigationPreloadLogPageLoad |
| MetricsObserver |
+--------------------------------+
 |
 | 4. UMA metrics are recorded on commit
 v

+--------------------------+
| UMA |
+--------------------------+

Key classes and structs

We’ll describe the details in the following sections. Here, we’ll only show an overview.

●​ Logs
○​ NavigationPreloadLog: Log of preloads related to a navigation. May hold

`PrefetchMatchLog`, NavigationPreloadLog for prerender initial navigation (if
the navigation is prerender activation navigation).

○​ PrefetchMatchLog: Log of prefetch matching. May hold
`PrefetchContainerLog`.

○​ PrefetchContainerLog: Log of PrefetchContainer.
●​ NavigationPreloadLogHolder: Holds NavigationPreloadLog to collect logs in

navigation.
●​ NavigaitonPreloadLogCapsule (//content public): Allows

PageLoadMetricsObserver to get/hold/record NavigationPreloadLog.
●​ NavigationPreloadLogPageLoadMetricsObserver: Record logs when a

navigation is committed.

Handling Prerender
There are two roadblocks around prerender.

Passing logs from initial navigation to activation
The prerender initial navigation and the activation navigation are two distinct navigations with
separate NavigationRequest objects. To connect them, we will store the
NavigationPreloadLog from the initial navigation in the PrerenderHost. When the page is
activated, the log is moved to the NavigationPreloadLogHolder of the activation
navigation.

None

void PrerenderHost::DidFinishNavigation(NavigationHandle*
navigation_handle) {
 auto* navigation_request =
NavigationRequest::From(navigation_handle);

 auto& initial_navigation_preload_log_holder =

*NavigationPreloadLogHolder::GetOrCreateForNavigationHandle(
 *navigation_handle);
 prerender_initial_navigation_preload_log_ =
 initial_navigation_preload_log_holder.Take();

 ...
}

std::unique_ptr<StoredPage> PrerenderHost::Activate(
 NavigationRequest& navigation_request) {
 ...

 // Before cut-and-pasting frame trees, move `PreloadLog`.
 auto& activation_navigation_preload_log_holder =

*NavigationPreloadLogHolder::GetOrCreateForNavigationHandle(
 navigation_request);

activation_navigation_preload_log_holder.SetLogOfPrerenderInitial
Navigation(
 std::move(prerender_initial_navigation_preload_log_));

 ...
}

Recording logs for failed prerender initial navigation
PageLoadMetricsObserver (PLMO) can observe only the prerender that is used for a
navigation. So, we need another path for failed prerender initial navigation.

None

We will introduce a new method, PrerenderHost::OnWillBeCancelled(), which will be
called from PrerenderHostRegistry::CancelHost().
Also, we will add an additional argument NavigationHandle* to them, which is non null if we
can get it.

Visibility and layering
PLMO is in outside //content. So, we need to make something //content public.

Log structure is relatively large and may contain //content non public data. So, we encapsulate
them into //content public NavigationPreloadLogCapsule.

All recording logic is in NavigationPreloadLog, including FCP.

Use of FrameTreeNodeId and FrameTreeNode
To get NavigationRequest, e.g. in (*) and (**), we use frame tree node id and frame tree
node.

We use this pattern in PrefetchMatchResolver. It is safe because
PrefetchMatchResolver is created per navigation; and PrerenderURLLOaderThrottle
works if the navigation is prerender initial navigation and it has a dedicated frame tree node.

Alternative considered

NavigationHandleUserData-like object that supports prerender

For Philosophy-1, we can consider providing a NavigationHandleUserData-like object. This
might be nice for the long-term, but it’s too generic for the short-time. We limit the scope to logs
for preloads.

Linear, unstructured log and then parse it

NavigationPreloadLog is structured. Alternatively, we can consider true history, linear and
unstructured log like the following:

{time = 2025-01-01T01:00:01Z, event = PrefetchContair::Added, value = ...}
{time = 2025-01-01T01:00:05Z, event = PrefetchMatchResolver::MatchStart, value
= ...}
{time = 2025-01-01T01:00:08Z, event = PrefetchContainer::ReceivedHeader, value
= ...}

...

It is too complicated. Logging is easy but we need to parse it before recording UMAs.

Rejected. We use structs like PrefetchMatchLog that are enough to log UMAs.

Shared handle to add data to NavigationPreloadLog

Consider adding some logs of PrefetchStreamingURLLoader or PrefetchDataPipeTee.
These components are far from prefetch matching and lifetimes are not bounded by
PrefetchMatchResolver. We’d like to pass data to these components to add logs, but also like to
avoid using FrameTreeNodeId to log it [section].

So, it would be nice to add a handle containing
base::scoped_refptr<NavigationPreloadLog>. Pass it to potentially matched
PrefetchContainer and PrefetchStreamingURLLoader and to actually matched ones
and PrefetchDataPipeTee, and then add logs using the handle.

Initially, we don’t need it, but we might add it in the future.

Version suffix of UMAs
Almost all UMAs are for debugging purposes. The users are the core developers of preloads.
So, we don't need to add a suffix for minor changes (with notice to the team).

An exception is FCP:

●​ PreloadLog.PageLoad.Clients.PaintTiming.NavigationToFirstContentfulPaint.WithoutPrel
oad

●​ PreloadLog.PageLoad.Clients.PaintTiming.NavigationToFirstContentfulPaint.WithPrefetc
h

●​ PreloadLog.PageLoad.Clients.PaintTiming.NavigationToFirstContentfulPaint.WithPreren
der

Naming
●​ NavigationPreloadLog

○​ “Navigation” comes from NavigationHandle.
●​ ServingPreloadLog

○​ We use this prefix tentatively.
●​ PreloadActivationLog

○​ We’d like to call “serving” as “activation” for both prefetch/prerender.

●​ HogePreloadMetrics

Kouhei解釈(どうでもいいかも）
Navigation - NavigationRequestがつくるもの

PrefetchActivation - 1このPrefetchEntryが当該Navigationでつかわれること
PrerenderActivation - 1このPrerenderEntryが当該Navigationでつかわれること

XServing - 0こ以上のXEntryが当該Navigationでつかわれること

Note
●​ We need to support prerender initial navigation that is committed but not used by

activation.
●​ Add a section to discuss what case is recorded. Compatibility with current PMR metrics.
●​ Metrics and contents of log.
●​ Send a mail to notice deprecation of PrefetchServingPageMetrics.
●​ About prefetch trigger-type-and-eagerness suffix.

CL review

std::unique_ptr<LogObject>
Discussion [doc]

●​ A. Use std::unique_ptr<LogStruct> everywhere.
○​ Pros (kenoss@)

■​ Simple.
■​ No need to judge what we should use.
■​ Minimal move cost.
■​ The move is guessable. (std::unique_ptr)

○​ Cons
■​ It is unclear whether it is nullable (lazily filled, optional because a

condition is not satisfied, might be moved out) or not.
●​ It is mitigated by detailed comments and CHECK.

●​ B. Use LogStruct if owned and not moved, std::optional<LogStruct> if optional
and copied from another place, std::unique_ptr<LogStruct> if LogStruct is
large or not copyable.

○​ Pros
■​ It is unclear whether it is nullable or not.

○​ Cons (kenoss@)

https://docs.google.com/document/d/16Q6gcPPv1XAg7mvlDdeJ8wBbEHH_9N6JbttAx-bGKjg/edit?resourcekey=0-LJHKBfdBHuePoPMWoMCM_Q&tab=t.0#heading=h.i3qtoncsr7yx

■​ It is still unclear why nullable (lazily filled, optional because a condition is
not satisfied, might be moved out)

■​ Move/copy cost depends on size and contents.
■​ Move/copy is non trivial nor guessable.
■​ Stack/owner class size is not guessable.

So, we will use A for log objects (for PreloadServingMetrics).

Trailing period for comments
We are not sure about concrete rules. We’ll leave it and fix it later.

PreloadServingMetricsCapsuleImpl
Private chat [doc]

There are pros/cons. Either is OK for the short-term. We’ll land it as is so far.

Using ContentBrowserClient instead of //content public feature flag
We tried the latter in the other situation. We concluded that the former is better for preloads,
because multiple triggers can depend on a new mechanism in //content.

(Known limitation: We can't use a feature flag in two experiments.)

What we tried in enabling prefetch/prerender integration:

●​ Originally, kPrerender2FallbackSpecRules had two meanings: 1. Triggers prefetch
ahead of prerender. (PrerendererImpl) 2. Enables paths of handling it in prefetch
execution stack (e.g. PrefetchService, PrerenderURLLoaderThrottle).

●​ Started to implement kDsePreload2. We needed 2 for it. Split 1 and 2 and added
//content public feature flag kPrefetchPrerenderIntegration. [cl]

●​ Started to implement Bookmarkbar trigger prefetch. We needed
kPrefetchPrerenderIntegration. Options: 1. Add a variant of
kPrefetchPrerenderIntegration. 2. Use ContentBrowserClient. We did 2.
[cl]

●​ Started to implement NewTabPage trigger prefetch. Ditto. [cl]

So, we use ContentBrowserClient for PreloadServingMetrics.

TODO left
We will leave some tasks as TODO as the CL chain is huge and rebasing is hard.

https://docs.google.com/document/d/16Q6gcPPv1XAg7mvlDdeJ8wBbEHH_9N6JbttAx-bGKjg/edit?resourcekey=0-LJHKBfdBHuePoPMWoMCM_Q&tab=t.0#heading=h.x92yjkcn3vlv
https://chromium-review.googlesource.com/c/chromium/src/+/6440784
https://chromium-review.googlesource.com/c/chromium/src/+/6865777
https://chromium-review.googlesource.com/c/chromium/src/+/6869311

Urgent (within a week or so)
●​ [thread][fix] Refactor PrefetchMatchResolver::FindPrefetch and ForTesting Approved
●​ [thread][fix] Use PreloadServingMetricsCapsule::IsFeatureEnabled() Under review
●​ [thread][fix] Mark structs as final Approved
●​ [thread][fix] Use methods for common part of UMAs, e.g. Done

is_prefetch_potential_match
●​ [thread][fix] Check necessity of WeakPtrFactory Approved
●​ [thread][fix] Fix typo: MakeSkeltonPreloadServingMetrics (skeleton) Approved
●​ [thread] Remove MakeSkeltonPreloadServingMetricsArgs. Wantfix

○​ Reason: Without this, I want to add comment
MakeSkeletonPreloadServingMetrics(/*n_prefetch_match_metrics
=*/n). Efficiency/binary size are not problems as this is in tests. I prefer using
struct as “with name call” is enforced.

●​ [thread][fix] s/prerender_host/prerender_host_for_metrics/ Wantfix
○​ As this is an argument.

●​ #ideal-form Discuss ideal form of Not started
PreloadServingMetrics/PreloadServingMetricsHolder/PreloadServingM
etricsCapsule

○​ [thread] Move PreloadServingMetricsCapsule into the internal of
content/public/browser/preload_serving_metrics_capsule.cc if it compiles.

○​ [thread] Describe the policy of logs.
○​ [thread] Rethink structure of PreloadServingMetrics and holder/capsule

Non-urgent
●​ [thread] Mark std::unique_ptr const if available. Not started

○​ Blocked by #ideal-form
●​ [thread] Centralize Take() call paths. Not started

○​ Blocked by #ideal-form
●​ [thread][fix] Consider to remove no-op test fixture Approved

https://chromium-review.googlesource.com/c/chromium/src/+/6884092/comment/1c16ca55_b5b2870c/
https://chromium-review.googlesource.com/c/chromium/src/+/6905115
https://chromium-review.googlesource.com/c/chromium/src/+/6884151/comment/a7f05afd_6c3ab19b/
https://chromium-review.googlesource.com/c/chromium/src/+/6911469
https://chromium-review.googlesource.com/c/chromium/src/+/6884151/comment/6865266c_72015b55/
https://chromium-review.googlesource.com/c/chromium/src/+/6908088
https://chromium-review.googlesource.com/c/chromium/src/+/6884381/comment/1da7d205_133f9299/
https://chromium-review.googlesource.com/c/chromium/src/+/6904298
https://chromium-review.googlesource.com/c/chromium/src/+/6884151/comment/7fc29f4d_27f4db7e/
https://chromium-review.googlesource.com/c/chromium/src/+/6908088
https://chromium-review.googlesource.com/c/chromium/src/+/6884267/comment/bc6ae369_6f9932c7/
https://chromium-review.googlesource.com/c/chromium/src/+/6908088
https://chromium-review.googlesource.com/c/chromium/src/+/6884267/comment/c89adc2a_1da260f0/
https://chromium-review.googlesource.com/c/chromium/src/+/6884093/comment/4d16f96c_0c64395b/
https://chromium-review.googlesource.com/c/chromium/src/+/6905115
https://chromium-review.googlesource.com/c/chromium/src/+/6883976/comment/376c27b3_91dc1486/
https://chromium-review.googlesource.com/c/chromium/src/+/6884151/comment/13a36900_96afc38b/
https://chromium-review.googlesource.com/c/chromium/src/+/6884151/comment/7207896f_dd92204c/
https://chromium-review.googlesource.com/c/chromium/src/+/6884265/comment/c61087b5_687b8f72/
https://chromium-review.googlesource.com/c/chromium/src/+/6884151/comment/441bf601_7fcf65a5/
https://chromium-review.googlesource.com/c/chromium/src/+/6884267/comment/a6a824bc_99789a26/
https://chromium-review.googlesource.com/c/chromium/src/+/6908088

	README
	PreloadServingMetrics: A Unified Logging Framework for Preloading Serving Metrics
	About this document
	Motivation
	Relation to the other projects
	Chrome Navigation Metrics Improvements

	Requirements
	Philosophy
	Design overview
	Key classes and structs
	Handling Prerender
	Passing logs from initial navigation to activation
	Recording logs for failed prerender initial navigation

	Visibility and layering
	Use of FrameTreeNodeId and FrameTreeNode
	Alternative considered
	NavigationHandleUserData-like object that supports prerender
	Linear, unstructured log and then parse it
	Shared handle to add data to NavigationPreloadLog

	Version suffix of UMAs
	Naming
	Note
	CL review
	std::unique_ptr<LogObject>
	Trailing period for comments
	PreloadServingMetricsCapsuleImpl
	Using ContentBrowserClient instead of //content public feature flag

	TODO left
	Urgent (within a week or so)
	Non-urgent

