

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

CSE 506: Operating System

Semester Project Report

A brief tutorial to port an Android ROM for

one device to another

Compiled by Aaswad Anil Satpute

(SBU ID: 109955001)

Under the guidance of Prof. Donald Porter

At Computer Science Department,

Stony Brook University,

NY

1 of 22

http://aaswad.7pute.com
http://www3.cs.stonybrook.edu/~porter/
https://www.cs.stonybrook.edu/home
http://www.stonybrook.edu/

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Table of Contents

Table of Contents
Introduction
Disclaimer
Setting up the environment
Android Debug Bridge
Enabling adb Debugging
Root access
Fastboot
Unlocking bootloader
Experimenting with the OS asis
Getting the official code
Getting hands dirty with the images
Brief listing of the different Images
Opening the System image
Driver configuration files
BuildProp File
Final Outcome
Conclusion
Bibliography

2 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Introduction

This is a tutorial for how to port a ROM (an Android OS) specifically made for one device to

other device. In this tutorial we would port Android 5.0 named as Android Lollipop made for

Google Nexus 5 to Google Nexus 7 (2012 model). There are few challenges involved here. One,

the device I’m porting the ROM to is quite old. Two, The Device I’m porting from is a cellphone

and the device I’m porting to is a tablet. During the whole process I failed many times, but due

to the interest I had in this project I completed it single handedly. Even though I have tried to

keep this tutorial as illustrative as possible, I couldn’t capture the images of the device during

some steps of the process because, unfortunately the device’s screenshot feature doesn’t work

when the device is not switched on completely and the OS is running properly.

Disclaimer

Perform this very carefully, if you want to try. This may brick your device and might void the

warranty. If you wish to continue, continue at your own risk. I’m not responsible for any losses,

if any, during the process.

All the trademarks and patents are owned by the respective owner. I don’t claim to be owner of

any of those.

Setting up the environment

We need to download all the drivers and setup the devices so that our process starts working

out. For this we need to download Android SDK Manager from this link,

http://developer.android.com/sdk/index.html.

For Mac we don't need the Google USB Drivers. Since I am working on my own Android app I

have few extra SDKs installed as seen in the screenshot. Once the appropriate SDK for the

platform is downloaded, we need to download the drivers, SDK Platform Tools and the SDKs

that you need. This is illustrated in the image below.

3 of 22

http://developer.android.com/sdk/index.html

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Android Debug Bridge

The adb is a tool that is located in <sdk>/platform-tools/. ADB is required for a computer to

communicate to the android device. For nexus devices most of the drivers are usually packed

into it. Android Debug Bridge (adb) is a versatile command line tool that lets you communicate

with an emulator instance or connected Android-powered device. The following image

illustrates the where to find adb.

When one starts an adb client, the client first checks whether there is any adb server process

already running. If there is no server running, then it starts the server process. When the server

starts, according to Google’s page for android debug bridge, it binds to local TCP port 5037 and

listens for commands sent from adb clients—all adb clients use port 5037 to communicate with

the adb server. The server then sets up connections to all running emulator/device instances. It

locates emulator/device instances by scanning odd-numbered ports in the range 5555 to 5585,

the range used by emulators/devices. Where the server finds an adb daemon, it sets up a

connection to that port. Note that each emulator/device instance acquires a pair of sequential

ports — an even-numbered port for console connections and an odd-numbered port for adb

connections.

At the same location one can find other useful programs or tools like “fastboot” which we would

be using in further processes to flash the freshly created OS or ROM.

4 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Enabling adb Debugging

In order to use adb with a device connected over USB, you must enable USB debugging in the

device system settings, under Developer options. On Nexus 7, the Developer options screen is

hidden by default. To make it visible, go to Settings > About phone and tap Build number seven

times. Return to the previous screen to find Developer options at the bottom.

When you connect the Nexus 7 to your computer, the system shows a dialog asking whether to

accept an RSA key that allows debugging through this computer. You need to accept it so that

the adb from computer can start talking to the device.

Root access

Android is a very subtle variant of Unix. When someone starts up the device it doesn’t have the

root privilege. In other words all the applications and everything that the user works on and

works with has only user privileges. Thus one can not get into kernel space. Rooting is the

process of allowing users of smartphones, Tablet and other devices running the Android mobile

operating system to attain privileged control (known as "root access") within Android's

sub-system. Rooting gives the ability (or permission) to alter or replace system applications and

settings, run specialized apps that require administrator-level permissions, or perform other

operations that are otherwise inaccessible to a normal Android user. On Android, rooting can

also facilitate the complete removal and replacement of the device's operating system, usually

5 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

with a more recent release of its current operating system. As Android derives from the Linux

kernel, rooting an Android device gives similar access administrative permissions as on Linux.

Because I need to edit the OS including the kernel, I need to get the root privileges of the device.

For rooting we need to understand fastboot. This is what we would see in next part.

Fastboot

Fastboot is a acute variant of instant-on. It is the ability to boot nearly instantly, thus allowing to

go online or to use a specific application without waiting for a PC's traditional operating system

to launch. Instant-on technology is today mostly used on laptops, netbooks, and nettops because

the user can boot up one program, instead of waiting for the PC's entire operating system to

boot. Fastboot is a diagnostic protocol included with the SDK package used primarily to modify

the flash file system via a USB connection from host computer. It requires that the device be

started in a boot loader or Second Program Loader mode in which only the most basic hardware

initialization is performed. After enabling the protocol on the device itself, it will accept a

specific set of commands sent to it via USB using a command line.

We then boot into bootloader with the command “./adb reboot bootloader” in terminal from the

same location where the adb and fastboot is located. It can also be loaded by switching off the

device and then holding down the Volume Down button and the Power button.

Fastboot for android is a very versatile and important tool. It can be used for flashing any ROM

or OS or to clear data from some specific location. The following image shows what all is

possible using fastboot.

6 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Unlocking bootloader

For us to get the root access we need to unlock the bootloader. The bootloader is usually locked

by default to idiotproof the device, so that a layman would not end up rooting one’s device and

mess up with the kernel. Now from the same location where adb is located we will run fastboot.

When we run fastboot we would need to set it to unlock the bootloader. For this we need to

7 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

execute the command “./fastboot oem unlock”. Now it would wait for the device to get the

command. It would now look like the image below.

Within few seconds it will ask a confirmation once, then click on “yes”, and the bootloader is

unlocked.

From now on one can see an unlocked icon whenever switching on the device. This means the

bootlocker is successfully unlocked. Now we can go ahead with our process.

Experimenting with the OS asis

Now I tried going the easy way, only to find failure. I extracted the Android Lollipop OS

developed for Nexus 5. I then tried to install this precompiled OS on the Nexus 7 Tablet. For this

I went to fastboot. Then I installed the OS on the new device with the update command of

fastboot program. For this I used the command, “./fastboot -w update

image-hammerhead-lrx21o.zip”. This command means run the fastboot tool,and when it gets

the device run the update command on the device using the fastboot tool and update the OS

ROM with the given image file, which in this case is “image-hammerhead-lrx21o.zip”. Because it

is not the same device, the device drivers must not work, and thats what happened as seen in the

image below.

8 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

As observed from the image above, device product details conflict with the device name. So I

unzipped the image. and found a file named “android-info.txt”. I edited the text file and edited

the required product name to be “grouper” rather than “hammerhead”. I then again zipped the

file and tried to flash the new version. Then it gave similar errors to all the fields that described

the device for which the OS is made. There are even fields to describe which all bandwidth would

the device support. This is not only a software mention, but it should also have the hardware to

support it. for example if one writes here that the device supports LTE but the device is only 3G,

it won’t install.

9 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

After editing all those fields and trying for a day, It finally failed (as expected), with multiple

errors. The errors. This can be seen in the image below.

This must have happened because the ROM image doesn’t have the vendor image because it

lacks a SIM slot. So there is no question of the vendor in the device but since the ROM has been

written for Nexus 5, also known as hammerhead, which has a SIM slot, the ROM fails to install.

Now one might ask why not pack all the binaries for all the devices into one image, the way

Windows or Mac or Ubuntu does? To this I would say, my speculation is since it is a mobile

device there are much more chips that can perform same jobs, e.g. Qualcomm Snapdragon

series for CPUs, Adreno GPU series, and top of that it can have various architecture, like 64 bit

32 bit or it may be intel based or ARM based. So if Google had to pack in all the drivers and

install dynamically the update would be much larger. For instance updates now are about 200

megabytes, and if it would contain all the binaries for all devices it would reach up to 3 to 4

gigabytes per device at least, if not more. This would have two challenges, one being there are

very few devices with such a huge RAM, to temporarily store things till being installed. And two

being it would use up lots of data transfer. And Google has a huge market in developing

countries where data transfer is much more costlier. So this is not in the best favor of Google

and Android. Even now, Google has been criticized for fragmentation, which is defined as many

Android devices are not updated to the latest flavor of Android. So if Google would have done

this it would suffer from fragmentation even more.

10 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Getting the official code

Most of the android code is written in a pattern. Or rather organized in a pattern. Leaving away

very few exceptions one will find the code in the following directories,

/device/[vendor]/[codename], /vendor/[vendor]/[codename], and

/kernel/[vendor]/[codename].

We can still go through one more simpler way. So now I downloaded the source code of Android

5.0 Lollipop. Google claims it is 8.5 gigabytes worth of code! It took me a week to understand

what code is for which part. After finally figuring out the small parts of the code. I tried to

recompile it for Nexus 7. It took a really long time to compile. Because Google suggested 16

gigabyte of RAM and I have only 8 gigabyte. My present laptop’s configuration is 8 gigabyte

RAM, 512 Gigabyte HDD, Intel i7 - 2.9 gigahertz, Quad core, and 3 megabyte level 3 cache. Then

when it compiled, I decided to try putting it on my device. It took long time to get put it on

device. I have installed custom ROMs on my devices and it takes at most 15 mins to get it

running. But this time it was talking more than 35 minutes to get it to run! So I decided to retry.

And next time it took about an hour to boot up. I was happy to see that it was working the easy

way. But to my wonder, it didn’t even last for 20 minutes.

I then recompiled the code, thinking that there must have been something wrong with the first

compile and thus it didn’t run. But again same thing happened.

Then I decided to give it a final try, but this time on the machine with the configurations

suggested by Google. For this I used my desktop which is back in India (a server grade machine).

The configuration being 32 Gigabyte RAM, 512 gigabyte SSD, and 1 terabyte HDD, Intel Xeon -

3.0 gigahertz, overclocked to 3.6 gigahertz, Octa core, and 20 megabyte of level 3 cache. So this

could easily handle the compilation. I had to transfer all the files and use-up my desktop using

Teamviewer, which is free for non-commercial use. Even after doing this the same thing was

happening.

I at this moment talked to few guys who worked at Samsung Mobiles. So I finally decided to go

ahead with the other ways I could think of and that were suggested by Samsung guys. And hoped

for success using that way, because the project deadline was fast approaching.

Getting hands dirty with the images

I downloaded the Android 5.0 Lollipop image for Nexus 5, the cell phone. It was a tar.gz file. It is

an archive which has idiot-proofed itself. So the compiled image for the bootloader is given

separately. We wouldn’t be using the image because it is given as a safety measure so that if at all

we screw up the bootloader we can still continue with this one. If at all one manages to screw up

the bootloader, “./fastboot flash bootloader bootloader-hammerhead-4.23.img” is the command

to reinstall the factory bootloader. The state at which one has screwed up the bootloader and/or

11 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

the recovery, is called bricking of the device. At this state one can not get into his or her device

and has to either put in all the images as made by the manufacturer.

The items in the archive are illustrated better with the following screenshot of the unarchived

form of the downloaded archive from Google.

Google also gives us the direct shell script to install the image. But the shell script basically only

runs the two commands we ran earlier.

The archive contains the final and most important part i.e. the zipped compiled images of

Android 5.0 Lollipop. Now let us unarchive the zip containing the images to explore what's in it.

After Unarchiving it we find images for boot, recovery, system, and user data. Boot image

contains the booting details. Recovery image contains the recovery files. This is particularly

important for OTA (Over The Air) updates. Then comes the system’s image it has the complete

Operating System in it. We will come back to this in some time. And the last we have user data

images, this has all the temporary variable values, and the initial setup files. And apart from that

it is completely empty with zero files. so it saves the space for user-data, which means the any

user application’s data. Which can be application’s temporary data for example the state of

game, or the high scores, or last used parameters.

The image below shows what all we have in the archived file we discussed earlier.

12 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Brief listing of the different Images

The Android phone mainly has few partitions which is meant to hold the different file systems.

They looks as follows:

dev:​ ​ size​ ​ erasesize​ name

mtd0:​ ​ 00040000​ 00020000​ "misc"

mtd1:​ ​ 00500000​ 00020000​ "recovery"

mtd2:​ ​ 00280000​ 00020000​ "boot"

mtd3:​ ​ 04380000​ 00020000​ "system"

mtd4:​ ​ 04380000​ 00020000​ "cache"

mtd5:​ ​ 04ac0000​ 00020000​ "userdata"

This usually varies from device to device. But more or less follows very similar architecture.

Opening the System image

Now we open the signed image archive file, “system.img”. This contains the complete Android

Operating System. This image is a signed archive of the system partition. To unarchive this I

used ext4_unpacker, and ext2explore on windows. These are simple apps on windows to load

13 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

the extended memory part to the program. We need to extract it from there after this. You will

find the following files and folders once extracted.

During this phase, I had primarily thought that I would rewrite all the drivers from scratch. For

this, I referred the video archive of the developer conference conducted by Marakana TV. This

gave me many views about how a code has to be written so that it would directly run on some

hardware. This was very interesting and so I started reading more about it. I then visited the

official site of Android where this is properly described. The website,

https://source.android.com/devices/index.html has detailed discription about the hardware on

which the Android is about to run.

Here one can find all the OS files right from drivers and library files to apps and media files. This

really made me very excited. I put in few hours browsing over the contents of this image file.

This fetched me many interesting facts about android like where can I edit my device name, or

the resolution, or the boot loading animation. In this system image, I had thought editing the

drivers would fetch me the required output. Let’s see what happens! Most of the drivers are

located at <system>/lib/. The following screenshot demonstrates the location of the drivers. It

also illustrates the variety of driver binaries put into the OS’s system image.

14 of 22

https://source.android.com/devices/index.html

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Now, I replaced all these drivers with the drivers from the similar Android 4.4.4 KitKat image

made for Nexus 7.

Once this was done I recreated the system image by archiving the folder and followed the exact

reverse of the unarchiving process. Then the system.img was kept at the same location from

where we unarchived. Then this folder was then again archived as the final image.zip. Now again

I tried to install this zip into the Nexus 7. This time it failed again.

Then I had to figure out what was going wrong. Finally after about 18 hours, I understood what

is that I was doing wrong. I edited the drivers, true, but the OS needs to know how to interact

with these drivers. So then I also had to update the driver configuration files. This is one of the

most important step discussed as follows.

Driver configuration files

The location <system>/etc/ is where one would find almost all the driver configuration files in

config file format. Few of the complex drivers like bluetooth, and wifi are packed in the folder.

This folder contains few config files related to the category. For example bluetooth has stack

config file as well as automatic pairing config files. This you can see from the image below.

15 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Now I had to go through all the driver config files. And check one by one if we need to edit

anything. I got all the properties of the new device from the official site as well as wikipedia. The

config files were also pretty easy to read and understand. For example for bluetooth config

which says which devices to connect and which not to connect, as seen in the screenshot below.

16 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Now I changed the config files. And recreated the system image as discussed earlier. This time it

finally worked.

But there were few bugs still in the OS. It did not scale properly, and had many weird artifacts.

One of those was the touch input used to take any input data without tablet even being touched!

This artifact once actually landed me into trouble. During a CSE 590 lecture, the tablet suddenly

17 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

switched on some song. I first thought that it must have happened by mistake but it continued to

happen like this for 2 more times.

I then decided to read about it on XDA forum at http://forum.xda-developers.com/. This was

because it actually computed for 1920x1080 screen, the one for Nexus 5, and so even a small

change in charge nearby the device made it feel that there is some capacitive body touching it.

And as it has capacitive screen, it was easily confused it as a touch. This is partially my

speculation and partly suggested by the forum.

There was only one hope to get this running properly, edit the build prop file.

BuildProp File

The build prop file is what holds the majority of the runtime flags that are used when android

boots, think of it as being similar to config.sys on dos or environment variables in various OS's.

It only holds variables, it can’t run any scripts on it's own. Whatever is placed inside depends on

android itself to pay attention to the flag and actually use it.

One can see the build prop file in the screenshot below.

18 of 22

http://forum.xda-developers.com/

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

19 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Final Outcome

Once all of this was done. I successfully ported Android to my tablet. Now I can easily enjoy the

latest Android version even before Google actually releases OTA (Over The Air) update for my

tablet.

Now my tablet shows the version to be Android 5.0 Lollipop. This can be seen from the

screenshot below.

20 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

21 of 22

A brief tutorial to port an Android ROM for one device to another

-​ Aaswad Anil Satpute (SBU ID: 109955001)

Conclusion

This was certainly a project that interested me a lot. Even though it required a lot of efforts from

my side, I enjoyed it a lot. I faced many problems as discussed earlier, and due to interest I

completed the project with satisfying results. The unarchived system image is uploaded on

http://aaswad.7pute.com/CSE506SysZip and is publically avaliable by anyone to whom this

project intrests.

Bibliography

I have referred to following materials to go through this project:

1.​ Android Developers, http://developer.android.com/

2.​ Android Source, https://source.android.com/

3.​ Android Drivers, https://source.android.com/devices/index.html

4.​ Android Internals - Building a Custom ROM by Marakana TV,

https://www.youtube.com/watch?v=1_H4AlQaNa0 and

https://www.youtube.com/watch?v=rFqELLB1Kk8

5.​ Wikipedia, https://en.wikipedia.org/wiki

6.​ XDA Forum, http://forum.xda-developers.com/

22 of 22

http://aaswad.7pute.com/CSE506SysZip
http://developer.android.com/
https://source.android.com/
https://source.android.com/devices/index.html
https://www.youtube.com/watch?v=1_H4AlQaNa0
https://www.youtube.com/watch?v=rFqELLB1Kk8
https://en.wikipedia.org/wiki
http://forum.xda-developers.com/

	
	Table of Contents
	
	Introduction
	Disclaimer
	Setting up the environment
	Android Debug Bridge
	Enabling adb Debugging
	Root access
	Fastboot
	Unlocking bootloader
	Experimenting with the OS asis
	Getting the official code
	Getting hands dirty with the images
	Brief listing of the different Images
	Opening the System image
	Driver configuration files
	BuildProp File
	Final Outcome
	Conclusion
	Bibliography

