
Structure of this Document

Outline

As a complex mature component of systems software, the Xen hypervisor has many APIs
and ABIs.
The majority of these are poorly described, and some are undocumented entirely. There are
multiple longstanding issues, causing problems ranging from packaging issues in distros, to
the inability to run encrypted VMs. This set of documents is concerned with all facilities Xen
provides to guests, and how guest kernels mediate access to these facilities for userspace.

This collection of documents are structured as follows:​

●​ An enumeration of the current APIs and ABIs of Xen​

●​ Challenges and limitations experienced with Xen’s current interfaces, with
explanations of the consequences and unwanted effects of the problems​

●​ Requirements for improvement: solution-neutral statements of changes that need to
be made

○​ Establishing the scope for revision
○​ Context important for determining acceptance criteria​

●​ Change proposals

○​ Taking into account: the current state of the technology; any requirements for
providing support across a transition; available and expected capacity for
design, development, review and deployment: what changes are proposed to
be made?

Christopher Clark & Andrew Cooper
September 2025

Current APIs and ABIs

Xen APIs and ABIs
To understand the current design and interfaces of Xen’s ABIs and APIs, an awareness of
the history of Xen’s development is informative.

Approximately the first half of this document will aim to provide a history and development
background for the hypervisor, to provide context and explanation for design and decisions
and a frame of reference for retrospective evaluation to assist design work for the future. The
second half of this document will describe how Xen looks now: this is the material being
evaluated for improvement.

Origins of Xen Interfaces and Guest Architectures
Development of the Xen hypervisor began with a design and implementation for
paravirtualization of 32-bit x86 architecture machines.

32-bit Para-Virtualized on x86
Mechanically, PV guests under Xen are just like userspace under a kernel, so the API
includes partition of the full virtual address space into separate regions between hypervisor,
guest OS kernel and guest OS userspace. Guest kernels are necessarily aware of and
exposed to the machine physical memory addresses used by the hardware, which may be
discontiguous and fragmented, since guest kernels maintain their own active page tables
under Xen’s supervision. They are also provided with a contiguous physical address space
abstraction, with guest physical frame numbers and a mapping to the corresponding
hardware machine frame numbers, as support for the conventional contiguous memory
model provided by hardware that the kernel is typically developed for.

In Xen’s paravirtualized memory model for 32-bit x86, hypervisor control over the
segmentation registers enables its protection from the guest OS kernel whilst remaining
resident within the guest address space for efficient hypercall execution.

Hypervisor operations are invoked by the guest kernel either via hypercalls - ie. privileged
software interrupts - or implicitly via traps or exceptions.

Early versions of Xen prior to 3.0 included hardware device drivers within the hypervisor
kernel itself. In Xen 3.0, the architecture changed to move the hardware drivers into the
privileged VM kernel of the first VM constructed at boot, Domain 0. This necessarily entailed
development of the privileged Domain 0 interface. Work on XenStore and the grant and
event interfaces enabled the split device driver model for implementing virtual network and
storage devices for unprivileged virtual machines.

Xen on Itanium (2005)
Support for ia64 architecture; later deprecated and removed but this hardware was an
architectural consideration throughout the first years of Xen development.

32-bit PAE on x86 (2005)
Support for larger physical address space with Physical Address Extensions was developed
fairly early in Xen for x86 (2005), adding support for 3-level page tables both within the
hypervisor and guest VMs. 32-bit PAE remains a separate ABI.

64-bit PV on x86 (2005)
Since 64-bit mode on x86-64 did not support segmentation when introduced, disjoint page
tables are maintained for execution of guest kernel mode and guest user mode. This
structure has more recently ensured robust enforcement of isolation between the system
privilege levels as mitigation against Meltdown.

32-bit and 64-bit Hardware Virtual Machines on x86 (2006)
Developed for Intel VTx and AMD-V hardware features, and including support for PAE.
This execution mode was required to provide support for running unmodified guest OS
kernels, including Windows XP: in this mode, the hypervisor is not resident within the guest
OS address space and the guest maintains its own page tables that contain fully virtualized
guest physical frame numbers. It is supported by a privileged device model process that runs
in an entirely separate address space for system device emulation.

With hardware support for multi-level page table translation, the guest page tables are
translated to machine frame numbers via a second set of tables maintained by the
hypervisor. Prior to availability of efficient hardware support for this second translation, a
separate technique was implemented with the hypervisor maintaining shadow page tables
for each guest, performing translation of guest accesses to their writable page tables via
emulation. This enables the hardware to run on the shadow tables that contain machine
frame numbers and so avoid the need for a second translation by hardware. Shadow page
tables are also useful for enabling guest introspection, which was developed later.

Simultaneous Multi Processing
Multiprocessor support followed after the initial development of support for guest long mode.

Stub domains and System Disaggregation
Support for running the privileged device model process in a separate virtual machine
context provides hardware-based isolation and confinement to the emulator software,
providing protection against the effects of defects in the emulator or attacks upon it by
malicious software.

Further system disaggregation is enabled by allowing the hypervisor toolstack to run in a
separate (control) domain from the hardware device drivers, and allowing PCI devices to be
dedicated to separate virtual machines that mediate access to those specific devices on
behalf of other virtual machines.

Managing permissions for privileged operations by VMs is possible either by using the
hypervisor default internal security policy, which will typically allow privileged operations by

Domain 0 and generally not by other domains, with some limited exceptions for device
models or passthrough devices managed by the toolstack, or via a dedicated permission
enforcement subsystem that takes an administrator-provided system security policy file
(XSM/Flask).

The ability to securely distribute functions and logical roles to different virtual machines,
adhering to the principles of least privilege to support maintaining system security,
necessarily introduces some complexity in the design of hypercall operations that perform
the individual implementation steps of the larger composite procedures.

Xen on ARM
Support for Arm architecture developed following the x86 HVM-mode interface, without
requiring the device model for emulation. 64-bit support was developed after the initial 32-bit
system support.

PVH on x86
A new hybrid mode of execution has been developed for enlightened Xen-aware
paravirtualized guest OSes, such as Linux and FreeBSD: able to use the silicon-assisted
virtualization support for the HVM fully-isolated system memory model, but without the need
to perform system initialization according to legacy standards and the requirement for the
device model emulator.

Xen on PPC
Previously developed, deprecated and then more recently has seen new interest in resuming
development.

Xen on RISC-V
Under development, with the design drawing significantly upon the Xen-on-Arm architecture.

Xen interfaces, APIs and ABIs
Note: this interface list is non-exhaustive. Not all items are pertinent to the Xen hypercall ABI
design.

●​ Hypervisor Entry
○​ Entry: multiboot 1
○​ Entry: multiboot 2
○​ Entry: EFI

■​ Secure Boot measurement
○​ Entry: PVH

■​ kexec
○​ Hypervisor command line

■​ Graceful failure handling for misconfigurations
○​ Hyperlaunch + Dom0less
○​ Processor microcode application
○​ XSM/Flask policy loading
○​ tboot log access
○​ Resume from host S3 / S0ix
○​ Watchdog, crash kernel

●​ Guest Entry
○​ Start info page
○​ Shared info page
○​ Initial vCPU registers content from domain_create

■​ contrast vs. default state of a physical CPU
○​ Initially-populated memory
○​ Initially-populated grant table
○​ Console IO
○​ CPUID: Available processor feature bits
○​ Model Specific Registers
○​ ACPI tables
○​ DMI tables
○​ Guest BIOS
○​ Memory map, address ranges
○​ Processor topology
○​ Processor frequency regulation
○​ Memory locality
○​ Timers
○​ Guest power states
○​ Guest kernel ABI declaration: Xen-x86-64-3.0
○​ CPU exception handling

●​ Hypercall interface
○​ PV32
○​ PV32pae
○​ PV64
○​ HVM32
○​ HVM64
○​ Compat

○​ Register conventions
○​ Use of Virtual Addresses: PV vs HVM/PVH
○​ Reference example with bounds checking: DMOP
○​ GHCB: communications paths for registers and hypercall issue, marshalling

protocol
●​ Guest syscalls

○​ Flag cleared: syscall behaves differently to any other trap in a PV guest
●​ XenBus
●​ XenStore
●​ Event Channels
●​ Grants
●​ PV devices

○​ Storage
○​ Network
○​ Console
○​ Timers

●​ Privcmd
●​ Argo

○​ Access to specific rings
○​ Connectivity between domains of different classes

●​ Foreign Mapping
●​ MMIO emulation
●​ IOReq Server interfaces
●​ Emulated devices
●​ Guest framebuffer
●​ Guest sound devices
●​ Guest optical media devices
●​ Guest USB 2.0
●​ Viridian enlightenments
●​ Xen PCI device
●​ PCI passthrough
●​ Stubdomains
●​ Xen Toolstack interfaces

○​ Tools interface to invoke toolstack operations
○​ Multi-host toolstack interfaces
○​ Host storage interfaces
○​ Host network interfaces

●​ Domain builder
●​ Shim: PV guest execution within a PVH domain
●​ Live Migration
●​ Live Patching
●​ Introspection
●​ Memory Ballooning
●​ CPU Hotplug
●​ PCI device hotplug
●​ Guest monitor display hotplug
●​ Crash kernel
●​ VirtIO guest devices

A list of hypercalls to be added, with annotation for each, indicating:
●​ Privileged or not: is this hypercall operating on domain-wide resources?

○​ as such should typically be constrained to access only by a guest kernel,
rather than unprivileged user-space

●​ Logical operation or not: for example: this is performing a standard part of domain
construction on behalf of another domain, vs. this a narrowly-defined, mechanistic
operation

○​ logical operations could be expected to be performed by a userspace process
(toolstack)

●​ Fast-path vs. Slow-path operations
○​ noted with reference to Hyper-V’s different register-passing interface that is

used for fast-path hypercalls
○​ to support prioritizing and enabling the fast execution of operations that are

important for performance

Current Limitations

Current Limitations in Xen ABIs and
APIs
Brief: Challenges and limitations experienced with Xen’s current interfaces, with
explanations of the consequences and unwanted effects of the problems.

To be added: cross-references to specific identified items in the Current APIs and ABIs
document.

Limitations encountered and improvements wanted

Improved support for discovery, enumeration of interfaces, capabilities
A general point applicable to the design of many of Xen’s existing interfaces.
Without enumeration, interfaces are expected to exist and are not configurable.

Versioning of interfaces
The current unstable interface to privileged domains from the hypervisor has resulted in
having to recompile the kernels and device models within privileged domains upon
hypervisor version upgrade.

Toolstack control over guest exposure to and access to individual
interfaces
A general requirement for new interfaces being introduced. This should include support for
audit of guest access to privileged interfaces.

Support for running encrypted VMs
Hypervisor cannot access guest memory without prior guest authorization. Precludes
general use of guest virtual addresses in hypervisor interfaces: accesses must be
page-based, with reference within the guest physical page space, in pages that have been
identified as shared with the hypervisor.
The same interface will also be usable within unencrypted VMs.

Use of Virtual Addresses in the Xen HVM hypercall ABI
Use of guest virtual addresses in the hypercall interface is correct for the x86 PV guest ABIs,
but not for the others.​
Guest virtual addresses require translation through two sets of page tables: guest virtual to
guest physical, and guest physical to machine. This translation is expensive - ie. can and
should be reduced with a different interface - and is also disallowed for encrypted VMs.

Virtual addresses are acceptable for some PV guest interfaces since the continuation of their
use entails fewer changes required for existing PV guests.

Mapping guest resources by virtual address
The shared info and timestruct pages are mapped by virtual address for the hypervisor to
write into: these should be deprecated as legacy interfaces and replaced with an interface
that requires physical addresses instead.

Hypercall interfaces: review and standardization
Revise design of interfaces according to current known best-practices: methods for passing
memory descriptors, efficient use of registers for arguments, dmop-style arguments for
userspace-invoked operations, standardized interface across varying guest types, etc.

Standardizing error responses
Review of existing interfaces for opportunities to standardize error response codes across
similar operations

Design for accommodation of differing page sizes
Common to see shift-by-12 in logic operations on x86 with expectation of 4K, but some Arm
guest kernels may prefer 16K and address-based interface design may support more useful
abstractions.​
x86 PV guests are currently disallowed access to using superpages.

Arm ABI: resolution of 32/64 bit register state and 128 bit architecture
Current ABI: all pointers are uint64_t, so in-memory structures are the same on arm32 and
arm64.
To be resolved: issue of differing register state of arm32 vs arm64, and design for arrival of
128 bit architecture.
For ABI design: key point is the: guest kernel idea of address space size.
ie. The guest kernel bitness is significant. Hypervisor to perform sign extension or zero
extension as appropriate: this provides a cleaner design, more appropriate for future
development.

Shared info page: layout varies per guest 32/64 bitness
Unhelpful for SMP domains. How to transition to a new fixed layout?

Privcmd
Presents challenges for system administration; a new design for an alternative interface is
requested.

Domain create operation complexity
The current design of this interface deserves revisiting.
eg. Mechanism for nomination and communication of the domain identifier (x86) or interrupt
controller (Arm) upon creation complicates the interface from what could otherwise be
input-only, which further complicates the logic between the kernel and userspace.

For consideration: invocation of sysctls or domctls to perform domain configuration after the
initial allocation completes but prior to scheduling.

Timer provision to PV guests
Default 100Hz timer configured: legacy from early design aiming to optimize in support of the
guest kernel but resulting in an interface that differs from behaviour expected of physical
hardware.

Dynamic memory allocation, ballooning
Present interface is an operation between a guest and the hypervisor: enables severe
fragmentation across the guest physical address space, which can affect performance of
operations involving the p2m map due to that.
Should instead be an operation between the guest and the toolstack as a logical operation,
and for the toolstack to manage instead. The hypervisor needs to implement a rate limiter on
expensive operations invoked by the guest or on its behalf.

Legacy architectural optimization
eg. TS flag clearing on syscall entry

Conflation of privileged and logical operations
Some hypervisor primitives perform operations that are not optimally abstracted, where the
logical operation being requested is conflated with the privileged implementation required to
perform it.
eg. physdev op
eg. mmuext op
eg. toolstack invocation of event_channel_alloc_unbound for a target domain
Consider separation into separate calls for a kernel requesting operation upon itself, and a
domain builder acting on behalf of a third party domain under construction.

Secure boot: support for non-monolithic kernel systems
Design for support of systems with separate Hardware Domain and Control Domain, where
userspace for either may be considered outside the TCB for a particular system.
XSM/Flask can express constraints eg. on the ability of the control domain to overwrite the
hardware domain to enable reflexive access back for overwrites within the control domain.

Host UEFI Secure Boot
Downstream distributions of Xen currently implement host UEFI Secure Boot with some
caveats and modifications to Xen and system boot components.

Security Support for XSM/Flask
(A list of work items to be produced towards enabling security-support for XSM/Flask
upstream)

Deprecation of source code headers for interface definition
An objective is to transition from the current C headers being the canonical source of
correctness for the ABI to a clear descriptive and authoritative statement with a
corresponding C structure that implements it. The interface can be stated in a
language-neutral way without ambiguity, to bring clarity around issues of padding, sign
extension, internal alignment, differences on 64 vs 32 bit, etc.
This work can support development of an IDL at a later time.

Support for Linux distro device models and hypervisor upgrades
QEMU typically runs within a privileged domain on Xen systems, to provide device emulation
or access to storage, and the ABI from the Xen hypervisor to privileged domains is unstable,
changing with each Xen major release. This has precluded the distribution of QEMU binaries
by Linux distros that can support arbitrary versions of the hypervisor, since the hypervisor to
device model interface is not well defined. It also prevents upgrade of the hypervisor
beneath an existing system running the toolstack.
This should be addressed with explicit interface design for both forwards and backwards
version compatibility between hypervisor and toolstack, and processes for ensuring that
retaining the stability of interface operations can be achieved.
This will significantly improve the deployability of the Xen hypervisor and support for tooling
and software systems that integrate with Xen.

Resource contention on access
Hypercalls or domain operations may require access to central resources where contention
is either predictable or costly. Design documentation should describe approaches for
mitigating this and interface design should support these.​
To evaluate for reference: Linux netlink interface.

Principles for improvements

Principles for Improvement and Future
Development
Brief: Requirements for improvement: solution-neutral statements of changes that need to
be made

●​ Establishing the scope for revision
●​ Context important for determining acceptance criteria of change proposals

This document will be expanded upon as feedback is incorporated from the preceding
two documents.

General Principles

Principle of least surprise
Design with reference to the expected behaviour of physical hardware, and foreseeable
evolution of hardware over time, when determining default behaviours for interfaces.
eg. determining appropriateness for automatic flag clearing on entry, vs. potential
optimization.
Examine available methods to enable guests to explicitly opt-in when implementing
divergent behaviour.

Design with reference to distinguishing privileged guest operations
Identify which guest operations are privileged, eg. operating upon domain-wide resources
such as grant-table entries, and so ought be constrained to use by privileged software such
as a guest OS kernel, versus non-privileged or logical operations, and thereby appropriate
for access by guest userspace software. This can enable efficient and appropriate audit and
access control enforcement.

Versioning, deprecation and availability of prior hypervisor interfaces
Since encrypted VMs cannot invoke or access the current hypercall interface, there is no
need to preserve their ability to access it: they can be assumed to be compatible with the
first version of the newer interface.

In general, guest VMs that are non-control domain, non-hardware domain, must be
supported as entirely backwards compatible. The expectation for all hypercalls is that they
are stable.

Reference to adjacent hypervisor design
●​ The Hyper-V Hypervisor Top Level Functional Specification is a reasonable

document.​
All hypercalls are performed in registers, addresses are guest physical with metadata
in the low address bits.

○​ Useful for reference to Xen control plane operations.
●​ The Hyper-V Primary Partition is similar to Xen’s Domain-0, with the rest of the

architecture similar to KVM.
●​ KVM domain construction is markedly different than in Xen, so many privileged

operations are omitted., eg. domctls, sysctls
●​ The uXen hypervisor has design heritage with Xen with subsequent development

occurring in parallel, so provides some references useful for comparison.
●​ pKVM has a system architecture of interest.

Specific Improvements to be Made

Use of Physical Addresses in HVM-mode hypervisor interfaces
●​ use a byte-addressable physical address instead of a page reference
●​ address rather than page references appropriate for use on systems using multiple

page sizes
●​ allows use of the low bits for flags, similar to how MSRs do

All data produced and consumed by the hypervisor shall be expressed as guest physical
addresses.

Distinguishing fast-path from slow-path operations
Explicitly identifying operations that are performance-critical will help ensure that there is
consensus on the need to implement eg. avoidance of lock contention, at the potential cost
of higher complexity within the hypervisor.

New APIs and ABIs

	Structure of this Document
	Outline
	Current APIs and ABIs
	Xen APIs and ABIs
	Origins of Xen Interfaces and Guest Architectures
	32-bit Para-Virtualized on x86
	Xen on Itanium (2005)
	32-bit PAE on x86 (2005)
	64-bit PV on x86 (2005)
	32-bit and 64-bit Hardware Virtual Machines on x86 (2006)
	Simultaneous Multi Processing
	Stub domains and System Disaggregation
	Xen on ARM
	PVH on x86
	Xen on PPC
	Xen on RISC-V

	
	Xen interfaces, APIs and ABIs

	Current Limitations
	Current Limitations in Xen ABIs and APIs
	Limitations encountered and improvements wanted
	Improved support for discovery, enumeration of interfaces, capabilities
	Versioning of interfaces
	Toolstack control over guest exposure to and access to individual interfaces
	Support for running encrypted VMs
	Use of Virtual Addresses in the Xen HVM hypercall ABI
	Mapping guest resources by virtual address
	Hypercall interfaces: review and standardization
	Standardizing error responses
	Design for accommodation of differing page sizes
	Arm ABI: resolution of 32/64 bit register state and 128 bit architecture
	Shared info page: layout varies per guest 32/64 bitness
	Privcmd
	Domain create operation complexity
	Timer provision to PV guests
	Dynamic memory allocation, ballooning
	Legacy architectural optimization
	Conflation of privileged and logical operations
	Secure boot: support for non-monolithic kernel systems
	Host UEFI Secure Boot
	Security Support for XSM/Flask
	Deprecation of source code headers for interface definition
	Support for Linux distro device models and hypervisor upgrades
	Resource contention on access

	Principles for improvements
	Principles for Improvement and Future Development
	General Principles
	Principle of least surprise
	Design with reference to distinguishing privileged guest operations
	Versioning, deprecation and availability of prior hypervisor interfaces
	Reference to adjacent hypervisor design

	Specific Improvements to be Made
	Use of Physical Addresses in HVM-mode hypervisor interfaces
	Distinguishing fast-path from slow-path operations

	New APIs and ABIs

