
BiDi Serialization in CDP
This Document is Public

Authors: sadym@chromium.org
Short Link: go/bidi-serialization

UPD 2022-05-09

Signed off by

One-page overview
Why?
What?

Serialization process

Scenarios
1. Node assertion.
2. `console.log` events.
3. Custom script.

Context
RemoteObject

Requirements

Alternatives considered
1. Serialization in a target context
2. Step-by-step using existing `Runtime.callFunctionOn(returnByValue=true)`
3. Implement `[DOM/DOMDebugger].describeObject(objectId)`
4. Add V8-only `addSerializedValue` param to `Runtime.callFunctionOn`, `evaluate` etc
4.1 (recommended) Add `addSerializedValue` param to `Runtime.callFunctionOn` based on
embedder-implemented serializer

Open questions

UPD 2022-05-09
The suggested changes were landed in https://crrev.com/c/3472077,
https://crrev.com/c/3596173, https://crrev.com/c/3472491

Signed off by
Name Write LGTM (or not) in this column

mailto:sadym@chromium.org
http://go/bidi-serialization
https://crrev.com/c/3472077
https://crrev.com/c/3596173
https://crrev.com/c/3472491


Alex Rudenko <alexrudenko@chromium.org> LGTM 4.1

Benedikt Meurer <bmeurer@chromium.org> LGTM

Andrey Kosyakov <caseq@chromium.org> LGTM 4.1, though we need better
names, but this can be left to code
review phase.

Danil Somsikov <danilsomsikov@chromium.org> LGTM

Philip Jägenstedt <foolip@chromium.org> LGTM with extra enthusiasm for 4.1

Mathias Bynens <mathias@chromium.org> LGTM 4.1

One-page overview

Why?
To implement WebDriver BiDi protocol (aka BiDi) using CDP, value serialization should be
implemented. Currently, there is no way to provide serialization for non JSON-serializable
objects in CDP. As WebDriver BiDi is going to be implemented using CDP, there is a need for
such a serialization.

What?
We propose to add a new method to the V8InspectorClient called bidiSerialize. This would allow
a V8 embedder to implement a custom serialization logic for embedder-specific value (e.g.
Node or Element in case of Chrome).

V8 would implement default BiDi-specific serialization logic for the native V8 objects (e.g.
primitive, object, maps, sets). It would also consult the embedder via the V8InspectorClient
interface to see if the embedder wants to provide a custom serialization. If the embedder
returns value, it would be used, otherwise a default V8 serialization takes place.

See prototype CLs at https://crrev.com/c/3472077 + https://crrev.com/c/3472491

These do the following:
1. Adds an additional param `addSerializedValue` + `serializationMaxDepth` to

`Runtime.callFunctionOn`, Runtime.evaluate etc, and an additional field `serializedValue`
to the `Runtime.RemoteObject` serializing V8, DOM and any other required domain’s
objects.

2. Adds a virtual bidiSerialize method to the V8 inspector client, which can be implemented
by the embedder (Blink, NodeJS, etc).

https://w3c.github.io/webdriver-bidi
http://go/bidi-mapper-context
https://source.chromium.org/chromium/chromium/src/+/main:v8/include/v8-inspector.h;l=208?q=V8InspectorClient
https://source.chromium.org/chromium/chromium/src/+/main:v8/include/v8-inspector.h;l=208?q=V8InspectorClient
https://crrev.com/c/3472077
https://crrev.com/c/3472491
https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#method-callFunctionOn
https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#type-RemoteObject
https://chromium.googlesource.com/v8/v8/+/refs/changes/77/3472077/4/include/v8-inspector.h#222
https://chromium.googlesource.com/chromium/src/+/refs/changes/91/3472491/3/third_party/blink/renderer/core/inspector/thread_debugger.cc#175


Serialization process
When a serialized value for the given Object is requested, the following steps are done by the
V8 Inspector:

1. Call the Object’s bidiSerialize. If custom serialization is implemented, consider its result
as a serialized value.

2. Otherwise, the Object is considered to be a V8 object, and is serialized by V8 Inspector
recursively, respecting the `serializationMaxDepth` (according to BiDi serialization
specification).

Performance Good 1 extra call in case of `console.log`

Trustworthiness Good

BiDi compatibility Good

CDP compatibility Good

Pros:
● Addresses all the main concerns
● Provides a trust-worthy way to serialize objects in CDP.

Cons:
● (weak, negotiable) Additional call is needed in case of the object received from the

console.log event.
● (conceptual), the `Runtime` method returns DOM specific data, which can be

confusing/misleading.

Scenarios
The scenarios below are BiDi scenarios where serialization might be needed:

1. Node assertion.
In a UI test, the user receives a node and asserts its state (some specific attributes, having
specific children etc).

2. `console.log` events.
User listens to the console.log events and verifies there are no errors.
User wants to get a log message preview for debugging purposes.

3. Custom script.
User runs a custom script which returns some custom data (e.g. page’s state).

https://chromium.googlesource.com/v8/v8/+/refs/changes/77/3472077/4/include/v8-inspector.h#222
https://w3c.github.io/webdriver-bidi/#data-types-protocolValue-RemoteValue-serialization
https://w3c.github.io/webdriver-bidi/#data-types-protocolValue-RemoteValue-serialization


Context

RemoteObject
Currently, there is a concept ot Runtime.RemoteObject, which can contain either objectId or, in
case of primitive values or JSON values, value.
The RemoteObject can be a result of `Runtime.evaluate`, `console.log(..args)` etc.
The RemoteObject can be:

● An EcmaScript primitive (number, string);
● Custom (not necessarily JSON-serializable) instance (object, function etc);
● DOM V8 (1), (2) representation;
● Something else?

Requirements

(weak)
Performance

The implementation should not create too much performance overhead

Trustworthiness The serialization results should be reliable and even malicious pages
should not be able to simulate unexpected results, e.g. by manipulations
with constructors.

BiDi compatibility ● The BiDi serialization should be implementable.
● The serialization should share the same `objectId`s in BiDi

and CDP.

CDP compatibility The implementation should not break CDP concepts and should be
implementable.

Alternatives considered

1. Serialization in a target context
Currently implemented in the Mapper.

Performance Good

Trustworthiness Poor Object’s constructor can be faked by the page.

BiDi compatibility Poor No way to provide the real CDP objectId.

https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#type-RemoteObject
https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#type-RemoteObject
https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#method-evaluate
https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#event-consoleAPICalled
https://source.chromium.org/chromium/chromium/src/+/main:out/Debug/gen/third_party/blink/renderer/bindings/core/v8/
https://source.chromium.org/chromium/chromium/src/+/main:out/Debug/gen/third_party/blink/renderer/bindings/modules/v8/
https://w3c.github.io/webdriver-bidi/#data-types-protocolValue-RemoteValue-serialization
https://github.com/GoogleChromeLabs/chromium-bidi/blob/c2f07c96da63a831d6c4a21fca02b6a4762cdf58/src/bidiMapper/scripts/eval.es~


CDP compatibility Good

Pros:
● No changes in CDP needed.

Cons:
● No way to make it trustworthy.
● No way to share objectIds.

2. Step-by-step using existing
`Runtime.callFunctionOn(returnByValue=true)`
Extension of the previous Serialization in a target context approach, but solving the issue with
ObjectId.

Performance Poor Each nested item requires 2 calls: to get an `objectId`
and to get a serialized value.

Trustworthiness Poor Object’s constructor can be faked by the page.

BiDi compatibility Moderate Race conditions between consecutive CDP calls.

CDP compatibility Good

Pros:
● No changes in CDP needed.

Cons:
● No way to make it trustworthy.
● Need for 2 CDP calls for each nested instance creates significant performance

overhead.
● Race condition between consecutive CDP calls,

3. Implement `[DOM/DOMDebugger].describeObject(objectId)`

Proof of concept: https://crrev.com/c/3440218
Add a new method to some domain aware of DOM and V8, like DOM or DOMDebugger. E.g.
`DOMDebugger.describeObject(objectId)` which serializes the provided object
according to the BiDi serialization spec. Serialization requires an additional CDP call.

Performance Good Can be done in 1 additional CDP call

https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#method-callFunctionOn
https://crrev.com/c/3440218
https://w3c.github.io/webdriver-bidi/#data-types-protocolValue-RemoteValue-serialization


Trustworthiness Good

BiDi compatibility Good/Moder
ate

Potential change between the 2 CDP calls, where the
object returned from Runtime.evaluate (or log event)
could change before being serialized.

CDP compatibility Moderate Conceptually mixing V8 and Blink.

Pros:
● Fully compatible with BiDi.

Cons:
● (weak) Having the logic implemented in DOMDebugger makes the approach not usable

when debugging NodeJS.
● (weak) Additional serialization call is needed (compared to the next option).
● Inherits the BiDi serialization specific:

○ Mixing V8 and Blink instances.
○ BiDi supports only a subset of the Blink (1), (2) objects.

4. Add V8-only `addSerializedValue` param to
`Runtime.callFunctionOn`, `evaluate` etc
Add an additional param `addSerializedValue` to `Runtime.callFunctionOn`, Runtime.evaluate
etc, and an additional field `serializedValue` to the `Runtime.RemoteObject` serializing V8
objects and marking DOM and other API objects as `apiObject`.

Performance Good 1 call to evaluate and serialize

Trustworthiness Good

BiDi compatibility Poor The approach doesn’t support DOM serialization.

CDP compatibility Good

Pros:
● Can be reused in NodeJS.

Cons:
● Not fully BiDi compatible. DOM objects are not supported. Trick with `isolatedWorld` can

be used for node serialization, but not for other DOM instances (eg Window).
● (weak, as it doesn't seem negotiable) Additional call is needed in case of the object

received from the console.log event.

https://source.chromium.org/chromium/chromium/src/+/main:out/Debug/gen/third_party/blink/renderer/bindings/core/v8/
https://source.chromium.org/chromium/chromium/src/+/main:out/Debug/gen/third_party/blink/renderer/bindings/modules/v8/
https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#method-callFunctionOn
https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#method-callFunctionOn
https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#type-RemoteObject


4.1 (recommended) Add `addSerializedValue` param to
`Runtime.callFunctionOn` based on embedder-implemented
serializer
Described in “What?” section.

Open questions
1. In approach 4, can Runtime provide DOM trustworthiness without having knowledge

about Blink? E.g. is there a way to recognize if the instance’s constructor is a native or
user-defined during serialization? Maybe somewhere in objectToProtocolValue?

● Reply from :Yang Guo
Within V8 you can detect whether an object was created to back a DOM object by
checking its instance type. Something like here:
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/objects/value-serializ
er.cc;l=567;drc=91318efd060e4164810264f47cd31b3fc7159d68 we use
WriteHostObject here to call out to Blink to serialize such an object in the
value-serializer, which implements message passing and structured clone

● Comments by :Benedikt Meurer
https://source.chromium.org/chromium/chromium/src/+/main:v8/include/v8-inspector.h;b
pv=1;bpt=1?q=v8inspectorclient and make smth like `descriptionForValueSubtype`
https://crrev.com/c/3472077 + https://crrev.com/c/3472491

2. Should the serialized `objectId` still be a referenceId, or should a consistent ObjectId be
provided?

mailto:yangguo@google.com
mailto:bmeurer@chromium.org
https://chromedevtools.github.io/devtools-protocol/tot/Runtime/#method-callFunctionOn
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/inspector/value-mirror.cc;drc=76c8d618a15f817eb3ee551220b22be71f789b4c;l=934
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/inspector/value-mirror.cc;drc=76c8d618a15f817eb3ee551220b22be71f789b4c;l=56
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/objects/value-serializer.cc;l=567;drc=91318efd060e4164810264f47cd31b3fc7159d68
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/objects/value-serializer.cc;l=567;drc=91318efd060e4164810264f47cd31b3fc7159d68
https://source.chromium.org/chromium/chromium/src/+/main:v8/include/v8-inspector.h;bpv=1;bpt=1?q=v8inspectorclient
https://source.chromium.org/chromium/chromium/src/+/main:v8/include/v8-inspector.h;bpv=1;bpt=1?q=v8inspectorclient
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/inspector/value-mirror.cc;drc=197ed39fa22e5ce84a2ea31aef039b5179a549ff;l=1537
https://crrev.com/c/3472077
https://crrev.com/c/3472491

