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DISCLAIMER 
This report was prepared by students as part of a university course requirement.  While considerable effort 
has been put into the project, it is not the work of licensed engineers and has not undergone the extensive 
verification that is common in the profession.  The information, data, conclusions, and content of this 
report should not be relied on or utilized without thorough, independent testing and verification.  
University faculty members may have been associated with this project as advisors, sponsors, or course 
instructors, but as such they are not responsible for the accuracy of results or conclusions. 
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EXECUTIVE SUMMARY 
The python-based wind turbine data acquisition system project was brought about to improve on an 
existing design of a similar PCC (point of common coupling) data acquisition system. The team that was 
put together was two students, both Mechanical Engineering majors, to complete this project. The team 
met with the client, Professor David Willy, throughout the entirety of the project to ensure aligned views 
and to ensure the team was on track for completion. The beginning of the first semester, Summer 2022, 
the team began the project and established requirements and expectations with the client. These 
requirements were split up into customer and engineering requirements.  

The team was required to meet all of the requirements and design and build a data acquisition system 
from the ground up. The engineering and customer requirements will be discussed in detail further on in 
this document, but in short, the team needed to improve on the previous PCC design by creating a smaller 
enclosure, utilize free software to analyze data, and improve the current sensing circuit. The team was 
able to satisfy these improvement requirements without ever seeing or reverse engineering any part of the 
previous design, but simply improved on the key aspects of the previous design through brainstorming 
and engineering knowledge gained through classes taken in the past.  

The first semester was composed mostly of starting the project by establishing a firm understanding of 
what needed to be built. The acquisition system is complex, and needs to measure multiple values from 
many different sensors. Once the team had a good idea of what needed to be done, roles were established, 
and the work began. Xuefeng Jiao was established as the software engineer for this project, where his 
main goal was focused on writing Python code to analyze and plot data. Spencer Norton was established 
as the hardware engineer, where he was focused on creating, gathering, and building the enclosure and all 
the hardware parts to make the system work.  

It was determined early on in the first semester that the project was going to be focused on the use of a 
Raspberry Pi, which is the central computer of the data acquisition system. This device was an ideal 
choice because of its ease of use, ability to run Python codes, and the flexibility it had with many other 3rd 
party devices. Using the Pi made writing python codes easier, as many libraries already existed for 
sensors, and these libraries only had to be adjusted to work together simultaneously. Once the Pi was 
decided to be used, the team moved on to determining the best kind of devices to use in order to 
accurately and correctly measure the values required for the project. These values were wind turbine 
voltage, wind turbine current, temperature, barometric pressure, and wind speed.  

The team chose devices that were both very accurate, and worked well with the Raspberry Pi and Python 
language. As the first semester came to a close, the team had determined the sensors that were needed, 
and other hardware that would be needed to complete the project. The beginning of the second semester 
began with ordering parts and testing began to ensure everything worked. The Python languages were 
started as well, as these were imperative to the success of the project. The team determined a suitable 
electrical enclosure to house all the components, and found a good ADC (analog to digital) converter to 
read voltage. The python codes were created using nearly all the sensors at the same time. Code provided 
by the manufacturer of the ADC was used and modified to work as needed. The code was then modified 
to record data to a csv file, and also plot live data using matplotlib libraries.  

By writing the Python code and physically building a system that could handle the requirements of the 
project, the team was able to successfully create a wind turbine data acquisition system that can measure 
voltage within a specific range, read current within two specific ranges, measure barometric pressure and 
temperature, and plot and record all the data all at the same time. Each requirement was met and in some 
cases exceeded by the hard work of the wind turbine data acquisition team. This document discusses in 
detail the process of completing this project.  
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1 ​ BACKGROUND 
1.1 ​Introduction 
This project is called the Python based wind turbine data acquisition system, which was originally started 
to improve on an existing PCC (point of common coupling) data acquisition system. The team created a 
new wind turbine data acquisition system by the use of a Raspberry Pi and Python code to read, record, 
and plot live data coming from multiple sensors. The team was required to measure wind turbine output 
voltage, wind turbine current, temperature, pressure, and wind speed. This was achieved by using an 
analog to digital converter (ADC) to read voltage, current, and analog wind speed, a temperature probe 
was used to measure ambient temperature, a pressure sensing board was used to read barometric pressure, 
and a cup anemometer was used to measure wind speed. By reading all of these values, the team will have 
created a system that will in the future be able to read voltage and correlate this to wind speed to 
determine power curves of the wind turbine. With this data, it will be possible to determine how different 
wind speeds can output certain voltages to aid in a clean energy environment.  

Through the use of Python code and many libraries provided by manufacturers, the team was able to 
modify and write new code to read from each sensor simultaneously. As these values were being read, the 
Raspberry Pi was able to record the data to a csv file, and plot the live data on graphs per the engineering 
and customer requirements established by the team and the client. This report discusses the project from 
beginning to end, including the entire design process and the final design built by the team. 

1.2 ​Project Description 
Based on the project description provided by the client, this project is always in need of constant 
improvement to find ways to collect data from the point of common coupling (PCC) between the turbine 
and the load to assess the performance of the turbine. This project will design and build a PCC data 
collection system out of inexpensive hardware and relatively free software.   
  

Following is the original project description provided by the sponsor.   
  

“The Collegiate Wind Competition is a project that we run every year for the fall-spring sequence. That 
project is always in need of ways to collect data from the point of common coupling (PCC) between the 
turbine and the load to assess the performance of the turbine. The current PCC system used by NAU is 
large and requires expensive software such as LabVIEW to run and an extra computer to collect the data.   
This project will design and build a PCC data collection system out of inexpensive hardware and 
relatively free software. Suggested hardware would be a raspberry pi and sensors for voltage, current, 
wind speed, temperature, rotor RPM, and pressure. Calculations that could be needed might be power, 
density perhaps. Suggested software would be python or any visual programming language comparable to 
LabVIEW but not as expensive.” [1]   
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2 ​ REQUIREMENTS 
The requirements of this project were determined through various staff meetings with the client and team 
members. Table 1 and Table 2 show customer requirements and engineering requirements with their 
associated units and values required by the client. Outside of these specific requirements, the team was 
required to use a Raspberry Pi to act as the main computer for this project. The team was also required to 
utilize free software to analyze and plot the data. This was something that needed to be improved from eh 
previous PCC design, which used LabVIEW to analyze data, which has a hefty cost associated with it. 
The team was also required to build the system independent of an internet connection.  

2.1 ​Customer Requirements (CRs) 
Table 1: Customer Requirements  

Customer Requirement    Description    Units    
CR1: Small Enclosure   Must be under 6x10x12 inches    Inches    

CR2: Display Gauges and 
Graphs    

For ease of use and easy-to-read 
data    

NA    

CR3: Display Live Data, Track 
Historical Data    

Ensures ease of use, must be able 
to analyze data in external 

software    

NA    

CR4: Downloadable to excel 
file    

Allows the user to take data to 
analyze in external software    

NA    

CR5: Cost Within Budget    Must create a system within the 
budget of $1500    

US Dollar    

CR6: Durable and Robust 
Design    

Must create a system that is 
durable and robust, including 
plastics, wood, and metal.     

NA    

CR7: Reliable Design    Must Create a system that is 
reliable and functional    

NA    

CR8: Safe to Operate    Must create a system that is safe to 
operate for the user    

NA    

 

2.2 ​Engineering Requirements (ERs) 
Table 2: Engineering Requirements  

Engineering Requirement    Description     Units    
ER1: Measure Wind Speed    Measure Wind speed from 0-25 

m/s and 0-8000 rpm   
m/s, rotations per minute    

ER2: Measure Temperature    Measure typical Flagstaff Arizona 
Ambient conditions, -25 to 100 

degrees Fahrenheit    

֯F    

ER3: Measure Pressure     Measure Atmospheric Pressure for 
typical Flagstaff Arizona 

conditions, 10-40 inHg, or 
0.34-1.35 bar    

Bar    

ER4: Turbine Voltage    Measure the range of voltage from 
the wind turbine, 0-48V, resolution 

range of <.05V    

Volts    
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ER5: Current    Measure the Current coming from 
the wind turbine, in two ranges, 
0-10 A and 0-30A, resolution 

range of <.01 A    

Amps    

ER6: Reliability and Durability Design must be reliable and 
durable for everyday use  

NA 

 

2.3 ​Functional Decomposition 
​
There are two main inputs in the Function Model: power input and programming input. The power input 
is used to provide stable power for the Raspberry Pi. The programming input is used to manipulate the 
sensors to acquire data from the wind turbine through the built-in function of Raspberry Pi using Python. 
The remote-control portion of the functional model is kept in the functional model as a feature the team 
would like to incorporate to allow remote access to the data acquisition system at a later date if needed. 
  
2.3.1 ​ Black Box Model 

 
Figure 1: Black Box Model 

The Black Box Model contains three inputs and three outputs. Three inputs are made up of data that the 
team needs to measure from the wind turbine and the environment. Three outputs are the results for the 
user, including the reading of graphs and multiple curves. The Black Box Model builds predictive models 
that exist in computer mode to help the team modify and clarify the input and output. This model helps 
the team follow the customer requirements and engineering requirements. There are multiple sensors that 
the team needs to use to collect data from the environment and the black box model visualizes the input as 
types of data collected from the environment.  
2.3.2 ​ Functional Model/Work-Process Diagram/Hierarchical Task Analysis 
This Functional decomposition helps the team understand how each input and output is tied to the system 
as a whole. The “sensors” Section of the decomposition is an encompassing part of the model, which will 
include, temperature, pressure, humidity, wind speed, wind turbine amperage, and wind turbine voltage 
measuring devices. Being able to see how the system is broken down helps the team members in creating 
designs and in the future, wiring the system together, because the simplified version of the system is much 
easier to understand.   

The functional model becomes more and more important as the team moves forward to the project as it 
clearly shows all the design requirements and goals. This model also guides the team to follow all the 
design requirements, including customer requirements and engineering requirements. 
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Figure 2: Functional Decomposition 

2.4 ​House of Quality (HoQ) 
In order to combine Engineering Requirements with Customer Needs and evaluate each of them to 
calculate the importance of each term of technical requirements, the team also generates a preliminary 
House of Quality. This model was built before second presentation, which means that the broad range of 
requirements and weights helped the team to have a basic and overall understanding of all potential 
design requirements. Finally, based on the results of technical importance, the team eliminates those 
unimportant requirements and choses critical requirements into the future design process.   
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Figure 3: Updated QFD Model 

2.5 ​Standards, Codes, and Regulations 
This project has a few standards and codes that were determined needed to be followed in order to create 
a safe, reliable, and functional system. The main standard that is needed for this project is the standard for 
the electrical enclosure. This enclosure houses all the components of the data acquisition system and has 
multiple interface ports added into the side of the enclosure. These ports have been sealed with rubber 
gaskets to maintain a water tight seal as much as possible. Table 3 shows the standard for the enclosure 
and the other standards the team has applied to the project. All CAD drawings were made to meet GD&T 
standards, so all the drawings for the simple CAD models of the project meet these standards.  

The next standard is for wire gauge, which is important for this project because of the high amount of 
electricity being used within the enclosure. The current sensing circuit is required to measure up to 30 
amps, so per AWG standards, 10 gauge wire is used [2]. NIST standards apply to the temperature sensor 
used for this project, which in order to meet the standard, the probe needs to be constructed of a certain 
material in order to maintain a certain accuracy. The ITS-90 standard is applied to temperatures sensors 
that are calibrated using high accuracy standard temperature generating sources, which unfortunately the 
team did not have. The team tried to the best of their ability to calibrate the sensor using resources on 
hand. These calibration tests can be seen in the testing section of this document.  
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Table 3: Standards of Practice as Applied to this Project 

Standard 
Number or 

Code  
Title of Standard  How it applies to Project  

NEMA  NEMA 4X  Ensures enclosure protects inside components against 
dust or rain  

GD&T  GD&T Y14.5  Standard of all CAD drawings for this project  
AWG  AWG  This standard will ensure the correct gauge of wire is 

used for the circuits   
NIST  ITS-90 These standards will apply for each sensor used in 

the system: temperature probe, pressure sensor, 
anemometer, and ADC  
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3 ​ DESIGN SPACE RESEARCH 
This section contains three parts: Literature Review, Benchmarking, and Functional Decomposition. 
Literature Review describes what sources were used for benchmarking and design research. 
Benchmarking involves on-site visits to organizations, observation, and interviews with employees to see 
how others have approached this type of design problem. Functional Decomposition introduces the main 
functions of the project and elaborates on the functional decomposition process.  

3.1 ​Literature Review 
This section describes what sources were used for benchmarking and design research. This is finished by 
examining similar systems, literature review, and web searches. There are five sources for each team 
member, and ten in total. Each member of the team was assigned a technical task based on their skillset, 
and their literature review sources are based on this designated title. Spencer was given the designation to 
work with hardware aspects of the project, while Xuefeng was designated as the Software specialist for 
this project.  The following sources were used as literature reviews for this project.  
 
Book: Raspberry Pi Beginner’s Guide​ 
 
This book will help the team to learn how to use the new mini-computer, such as setting up the operation 
system, programming in Python.​ 
 
Book: Python Basics​ 
 
This book is a self-learning introduction for the beginners of Python, which provides the team with basic 
functions of programming.​ 
 
Book: Data Acquisition Using LabVIEW ​ 
 
The goal of this book is to transform physical phenomena into computer-acceptable data using a truly 
object-oriented language.​ 
 
Article: Raspberry PI Based Integrated Autonomous Vehicle Using LabVIEW​ 
 
This is a recent study that combines Raspberry PI, Python, and LabVIEW together and apply them into 
practice. 
 
3.2 ​Benchmarking 
For the team to properly design a wind turbine data acquisition system, many different existing designs 
had to be researched extensively to find advantages and disadvantages of these designs. The following 
sections go in to detail which products were benchmarked, including a NETDAQ system, a WIFI weather 
station, and a Raspberry Pi weather station. Then the team benchmarked sub systems to research parts of 
the system that had the most variability of change to effect the system as a whole. These included analog 
to digital converters, anemometers, and programming methods.   

1.1.1 ​ System Level Benchmarking 
This section of the benchmarking research includes systems that are similar to the weather station system 
as a whole. The purpose of the weather station is to receive data from numerous sensors and interpret that 
data to create metrics that show power curves, and other graphs to plot data. The following benchmarking 
items were seen as valuable research to do in order to find features that could benefit or not benefit the 
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future designed system.   

1.1.1.1 ​ Existing Design #1: NETDAQ System  
This system level benchmarking was done as a high level data collection comparison. The overall goal of 
the system being designed is to collect data and place that data in an excel sheet. The NETDAQ data 
acquisition system is a very outdated validated data collection system that can be used to collect data from 
numerous ports that can be collecting temperature, pressure, or other values. The research done with this 
system was for the place of employment of one of the team members, where the system was used to 
collect temperature measurements from multiple locations within a refrigerator. The system itself worked 
great at collecting the temperature data, with reasonable accuracy.   
 
The main point of concern with this outdated system is that it runs on a Windows 7 operating system and 
an older version of excel, which is of course not ideal for the new design system. The system was chosen 
as a benchmark because of its ability to constantly record data to an actual excel sheet. Once the excel 
sheet was filled to the programmed limit, the sheet could be downloaded and used in other programs to 
utilize and analyze the data. This is something that the future design of the team’s data acquisition system 
needs to incorporate. In the future, the NETDAQ will hopefully be researched more to see how the 
operating system interfaces with the user to receive inputs such as measurement rates, where to store data, 
how long to collect data, and other inputs like these.   
 

1.1.1.2 ​ Existing Design #2: WIFI Weather Station WS-2902C 
WIFI weather stations are one of the most popular weather station choices for families and anyone not 
wanting to really get into intense weather systems. Most of these wireless weather stations include a cup 
anemometer, potentially a wind direction sensor, and other sensors for temperature, humidity, and 
pressure. The reason this type of system was researched as a benchmark is because of the ease of use of 
the systems. These easy to acquire, WIFI stations are very easy to set up and very easy to use. For this 
reason, we wanted to look into what really makes them so user friendly.   
 

After looking into many different types of stations, it was easy to see that most of them have a user 
interface that is laid out in a tile format. The touch screen display has all different types of tiles that each 
show different information such as pressure, temperature, wind speed and direction, weather to expect for 
the day, but none of them ever showed voltage or current readings from the anemometer [3]. This is not a 
big issue as most families wanting a weather station will not want to measure these things, but being able 
to look at the user interface gave us some great ideas of what to do when creating a visual user interface to 
display data from the various sensors.   
 
1.1.1.3 ​ Existing Design #3: Raspberry Pi Weather Station 
This particular weather station was created by a team for the Raspberry Pi company. The entire creation 
and operation of the weather station can be found online at the Raspberry Pi Foundation website [4]. This 
article was very interesting to read because not only does it go in depth for each component (i.e. 
anemometer, sense hat, temperature, and humidity), but it describes the Python code needed to make this 
system work properly.   
 

We really wanted to use this system as a benchmark for the future design because it was so similar to what 
we need to create. Because this system is so simplified, it is great to see how different, simpler 
components work in similar ways. The system being researched utilized a cup anemometer that has an 
ethernet cable on one end instead of power pole connectors, which may not be the best solution for our 
design due to the need for multiple channels receiving input from our anemometer, but it was still 
interesting to see how this type of anemometer could work.   
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For humidity and temperature, the Pi foundation used external temperature and humidity sensing boards 
to measure these different values. They used the BME280 to measure pressure, and the DS18B20 to 
measure temperature. These board can interface well with a Raspberry Pi, and they will be looked into in 
the future as potential devices if the Raspberry Pi sense hat does not work for our design.   
 

1.1.2 ​ Subsystem Level Benchmarking 
This Chapter will discuss benchmarking for the subsystems of the wind turbine data acquisition system. It 
was decided by the team that the most important components of the system would be benchmarked. Not 
only were the most important components benchmarked, but the sub systems that had the most variability 
in choice that would affect the system.  

1.1.2.1 ​ Subsystem #1: Analog to Digital Converters 
Analog to digital converters will be crucial to the correct operation and longevity of the data acquisition 
system. In order for the cup anemometer to work correctly with the Raspberry Pi, an analog to digital 
converter has to be used to convert the electrical signals to readable digital signals. Once these analog 
signals are converted to digital, the Raspberry Pi can take the signals from the cup anemometer connected 
to multiple channels and the Python code will interpret that data to wind speed, voltage, and current.   

 1.1.2.1.1 ​ Existing Design #1: U3 LabJack Converter 

The U3-H3 Labjack Analog to digital converter is a great option to convert the voltage coming from the 
anemometer. This converter claims to have high voltage inputs, 12 flexible inputs and outputs, and 4 
dedicated digital inputs and outputs [5]. Having this many inputs and outputs would not necessarily be 
needed for the future design phases or the final design, but it would still be nice to have them if more 
inputs were decided to be added.   

 1.1.2.1.2 ​ Existing Design #2: ADS1015 

The ADS1015 is an analog to digital converter that claims to work well with Raspberry Pi computers. The 
converter only has 4 channels, and comes in 12 or 16-bit models [6]. Because this converter works so well 
with Raspberry Pi computers, there is already libraries created that can be easily installed with Python 
code. This converter would be an easy to use, and very small solution to amplifying the voltage coming 
from the cup anemometer. There are no known downsides to using this converter for the data acquisition 
system.    

 1.1.2.1.3 ​ Existing Design #3: Pi-16AC Analog-Digital Converter Hat 

Raspberry Pi’s are very customizable computers, and as such, hats are a very cool option in 
customizability. These hats are stackable, meaning there can be multiple hats on one Pi board, so the 
temperature and humidity hat can still function, and another can be added on top. This particular hat is 
made to convert analog to digital electricity, and would be very simple to use with the Raspberry Pi. This 
converter hat has 16 single ended, or 8 different analog to digital conversion ports, and is a 16-bit model 
[7]. This converter would be easy to use and have low power consumption, but on the downside, the heat 
generated by the board could effect the sense hat that is simultaneously measuring temperature and 
humidity. Because these hats are so inexpensive, the team will likely try one of the converter hats as part 
of the prototyping process.   

1.1.2.2 ​ Subsystem #2: Anemometers 
The team wanted to look into different types of anemometers to see which one would likely work best for 
the design. There are a number of different types of anemometers, the sponsor of the project provided two 
cup anemometers for the system, but did not require the use of them over other measurement devices.   
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 1.1.2.2.1 ​ Existing Design #1: Post Connector Cup Anemometers  

The post connector style anemometer will likely be the best device for the future design of the weather 
station. This method of connection allows for the anemometer to be connected to a shunt resistor to allow 
the Raspberry Pi to measure current. Without the usage of a post style connecting anemometer, there 
would have to be an additional wind device to measure current and voltage separate from the cup 
anemometer. Having two different wind speed sensors would bring about difficulties in separation of 
streamlines so that one device is not interfering with the other.   

 1.1.2.2.2 ​ Existing Design #2: Vane Anemometer  

A Vane style anemometer was researched as another option to measure wind speed for this project. Due to 
the design of most vane anemometers, they can measure wind speed, temperature, and humidity all in one 
package. This would be beneficial to the design of the system because it would eliminate the need for the 
temperature and humidity sensors on the Raspberry Pi sense hat board. Using a vane anemometer and 
eliminating the sense hat would still create a need for a pressure sensor, and voltage/ current 
measurements. Vane anemometers are also difficult to interface with systems other than the velocity 
meters that they are made to work with. This made the vane anemometer become a likely component that 
would not work with the future design.   

 1.1.2.2.3 ​ Existing Design #3: Analog Output Anemometer 

There are multiple types of anemometers, and the team wanted to look into an analog output anemometer 
as a potential device to measure wind speed. Using an analog output device would allow the team to 
integrate the voltage output into the ADC and read the voltage similarly to how the turbine voltage output 
would be measured. This would simplify the amount of devices needed to read measurements. Being able 
to ready voltage and convert to wind speed would greatly simplify the system as opposed to using a 
digital output anemometer that would require another ADC all together.  

1.1.2.3 ​ Subsystem #3: Programming Layout Methods  
LabVIEW is a system-design platform and development environment for a visual programming language 
from National Instruments, which uses the graphical language. For university students who have a 
programming basic, it is easier for the team to use Python. The following section will compare graphical 
language with Python language and reach the conclusion that the built-in programming function of 
Python in the Raspberry Pi works better than the graphical language of LabVIEW. There are four 
important data types of LabVIEW that the team will use in the design process: Numeric, Boolean, String, 
and project.  

 1.1.2.3.1 ​ Existing Design #1: Numeric  

Take the Numeric as example. Each element of the component is represented by a picture. This visual 
programming language makes the codes look more straightforward, but also increases the difficulty for 
coders if they do not have a solid understanding of these instruments. Figure 4 shows a simple final result 
of the programming. It is easy to read by users but involve a lot of electrical engineering knowledge for 
people to write the code. Considering the expensive cost of this software, the team decides to give up 
LabVIEW in the future design process.  
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Figure 3: Front Panel  

 

  
Figure 4: Block Diagram   

 

 1.1.2.3.2 ​ Existing Design #2: Case Structure in LabView 

The enclosure system in the LabVIEW is called Case Structure. Take the thermometer as an example. For 
different amounts of temperature, the terms of low, high, or very high should be shown in the indicator. 
The first step is to insert a Knob, then change the amount from 1 to 100. The second step is to insert the 
Thermometer. The third step is to insert the Numeric Indicator. The fourth step is to insert the String 
Indicator. The last step is to open the Case Structure in the Block Diagram window, as shown in Figure 5.  
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Figure 5: Case Structure   

 

 1.1.2.3.3 ​ Existing Design #3: Raspberry Pi While Loops 

After implementing this process, it is true that the visual programming in LabVIEW is more 
straightforward than a Python code, but the problem is also obvious. There are too many similar 
components in the LabVIEW, students who lack relevant Electrical Engineering knowledge are easy to 
make mistakes when selecting the electrical component for the circuit.  
 

While loop and For loop are two important programming functions in the design process of LabVIEW. In 
order to create a Loop, click the Structure and choose the corresponding Loop. Then the Structure 
containing Loop Conditions and Loop Iteration will be set up. The final step is to add electrical 
components to the structure and run the Loop to start the simulation.   
 

The team then compares the LabVIEW programming of the Loop with the built-in Python programming 
of Raspberry Pi. The advantage of using Python to replace LabVIEW is that there are already plenty of 
Python codes on the internet, together with many projects based on the Raspberry Pi. In this case, the 
team can directly study these projects and use their codes. But there are less contents and discussion about 
LabVIEW on the internet because its programming language is only used by professional engineers. 
Therefore, be consistent with the Raspberry Pi will save the team members a lot of time and improve the 
accuracy of results.  
  

  
Figure 6: While Loop  
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Figure 7: For Loop  
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2 ​ CONCEPT GENERATION 
This chapter shows the concept generation that the team went through to eventually find a final design. 
Because the number of team members are at a minimal number of two, the concept generation process 
was very simple. Each team member was asked to create two to three unique designs, where these designs 
then were discussed across the team members to decide which would make it to the final three full system 
concepts. Sub system concepts were broken up evenly across the two team members to find sub system 
designs for a few of the systems within the wind turbine data acquisition system.   
 

2.1 ​Full System Concepts  
The team came up with three full system concepts to start out the concept generation. Because the wind 
turbine data acquisition system as a whole is fairly simple and the design requirements are strict, the 
designs do not differ very much. The system is composed of a monitor, an enclosure, a boom arm 
containing the sensors, a keyboard, and a mouse. The largest design hurdle was to find the best way to 
combine these parts while minimizing cost and size, while still maintaining functionality.   
 

2.1.1 ​ Full System Design #1: All-in-One Weather Station  
The All in one weather station is one that was designed to keep all the components of the system very 
close together and not separable. The design is meant to have one single, large enclosure that houses the 
Raspberry pi, the sense hat, the analog to digital converter, the shunt resistor, and even the monitor, all in 
the same enclosure. There are water resistant monitor cases available on the market that would work for 
this design, and would allow for the electrical components to also fit inside with fans on the enclosure as 
well.   
The only drawback to this design that the team thought of was the cost of the water resistant materials. 
Not only would the monitor enclosure need to be water resistant, but the keyboard and mouse located 
outside the monitor enclosure would also have to be water resistant, which will be more expensive.   

  
Figure 8: All-in-One Weather Station  
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2.1.2 ​ Full System Design #2: Touch Screen Weather Station  
To minimize the footprint of the weather station even more, a small touch screen was brought up as a 
replacement to the full size monitor screen. Having a small (7 inches) touch screen would allow the 
enclosure for the other electrical components to be much smaller than the all in one weather station. The 
touch screen and electronics enclosure would likely be kept on a tripod or table with the anemometer 
boom arm mounted to a wooded support surface. This design would also eliminate the need for a 
keyboard and mouse.   

  
Figure 9: Touch Screen Weather Station  

 

2.1.3 ​ Full System Design #3: Standalone Weather Station  
The standalone weather station was designed to look similar to most on the market weather stations. The 
cup anemometer and other sensors are kept on a tripod completely separate from the monitor, keyboard, 
and mouse. The monitor, keyboard, and mouse could be kept indoors or outdoors closer to the tripod of 
sensors. Keeping the monitor indoors would allow from access to the system without having to go 
outside, all the software and data would be inside away from the elements. This particular design would 
have the need for longer cables for both HDMI and USB going to the Raspberry Pi device, which is not 
necessarily a problem, but depending on the length, could cause issues with performance.   

  
Figure 10: Standalone Weather Station   
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2.2 ​Subsystem Concepts  
In order to create better designs for separate parts of the weather station, the team broke up the system 
into three different subsystems. These subsystems were chosen over others because they had higher 
variability of change that could affect the system as a whole.   
  
2.2.1 ​ Subsystem #1: Boom Arm  
The boom arm of the weather station can have an interestingly difficult design to it depending on what the 
team chooses to put on the arm. As discussed earlier in the Benchmarking chapter, the team could have 
more than one component on the arm, causing the elevation of the different components to be very 
important to prevent inaccuracies in measurements in devices in the same turbulent streamlines.  
  
2.2.1.1 ​ Design #1: Double Measurement Arm  
The Double measurement arm would have two sensors on the arm, one of which would be a cup 
anemometer, the other being a mini wind turbine. The functionality of these devices would be overall to 
gather wind speed, voltage, and current. The reasoning behind splitting them up is to decrease confusion 
in the wiring of the Raspberry Pi channels when only using one anemometer to measure all of these 
things. The elevation of the two different measuring devices is very important as to decrease the creation 
of more turbulent flow across the first sensor going to the second sensor. Using this design assumes the 
temperature, humidity, and pressure are kept within the enclosure.   
 

2.2.1.2 ​ Design #2: Triple Measurement Arm  
The triple measurement arm design is a branch off from the double measurement arm, in that it still 
includes two anemometers, but also has a third arm for the temperature, humidity, and pressure sensors. In 
the event that the Raspberry Pi sense hat does not accurately measure ambient conditions, another 
approach will need to be made, and that is where this design will come into play. The ambient condition 
arm (third arm) would likely include a k-type thermocouple plugged into the Raspberry Pi, along with 
pressure sensors and humidity sensors.   
 

2.2.1.3 ​ Design #3: Single Measurement Arm  
The single measurement arm was designed to only include one single cup anemometer on a boom arm. 
This would indicate that all the measurements of wind speed, voltage, and current are coming from the 
single anemometer. Temperature, humidity, and pressure are coming from the sense hat within the 
enclosure.   
  
2.2.2 ​ Subsystem #2: Enclosure Placement   
To create a better enclosure, the team decided to create designs for the placement of the enclosure itself, 
and the placement of the components inside the enclosure. The placement of the enclosure will be 
constrained by other component positions in the real life design of the system, but mostly, the placement 
of the components is what is important for this section.   
 

2.2.2.1 ​ Design #1: Tall Enclosure  
The tall enclosure is designed to be just as the name say, tall, and skinny. This would allow for a very 
small design, which would likely go well with the touch screen full system design, because the touch 
screen could be mounted on top of the enclosure. The tall skinny enclosure would likely be placed on a 
wooden platform that the boom arm would be mounted to. This design would of course keep the footprint 
of the overall system at a minimum, but could also create difficulties in wiring space, and flow of cooling 
air from the fan to cool the Raspberry Pi.   
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2.2.2.2 ​ Design #2: Flat Enclosure  
The Flat enclosure would have a similar functionality to the tall enclosure, but would allow for more of a 
flat design that could accommodate a monitor to sit on top of the flat enclosure. Placement of components 
would be fairly straightforward, with everything sitting directly in line with each other, and wires running 
across the length of the enclosure. Having a flat enclosure would bring about the need for likely more than 
one fan, because of the placement of the components, and the lack of air flow up and down the height of 
the box.   
 

2.2.2.3 ​ Design #3: Large enclosure with monitor  
This design would go best with the all in one weather station system design, because the components 
would be placed in a very large box, but it would also have a monitor. This enclosure would have plenty 
of room for spacing out the Raspberry Pi, digital to analog converter, and the shunt resistor to create less 
of a buildup of heat. Using this design would violate the customer restraint of dimensions for the 
enclosure which are 6x10x12 inches, but this could be an exception because of the monitor being kept in 
the enclosure with the electrical components.   
  
2.2.3 ​ Subsystem #3: Visual Layout   
This subsystem design is going to be important when programming the way the visual layout of graphs 
and gauges looks later in the project. As seen with at home weather stations, the screens that come with 
them do a great job at laying out the information in an easy to read tile layout so that all the information is 
in one accessible spot. This design phase aims to find different ways to lay out the interpreted information 
from the sensors.   
 

2.2.3.1 ​ Design #1: Tile layout  
This design aims to mimic the popular layout of most at home weather stations that have a tile layout of 
all of the information. This would be best on a touch screen and could include tiles that have the ability to 
move around. These tiles will include power curves, graphs for maximums and minimums of each 
channel, and tiles that are displaying live data from each channel.   
 

2.2.3.2 ​ Design #2: Tab layout  
This design will have tabs similar to a browser or an excel sheet, where each tab brings up a full screen 
window of whatever information the user is wanting to see. Tabs could include graphs of maximums and 
minimums, live data, and power curves. This design could be less than ideal because of the need to switch 
tabs to see different information. Users like to see all the information in an easy to see place all at once.  
  
2.2.3.3 ​ Design #3: Touch screen swipe layout   
This design utilizes the touch screen, and will be similar to the tab layout, but will only require a swipe to 
move between tabs. This design will show the same information as the tab layout, and has the same 
downsides as the tab layout. Another normal downside to touch screens is that they do not work well in 
the rain, which could be an issue for an outdoor weather station. Having a touch screen in the rain would 
render the screen practically useless to the user to choose what data to see.   
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3 ​ DESIGN SELECTED – First Semester 
After all the design steps, analysis completed, and hardware tested, the team came up with a final design 
for the summer semester. This design tries to encapsulate all the results of testing and design phases to 
create a system that fully meets all of the customer needs and engineering requirements.   
 

3.1 ​Design Description  
The final design will include a water-resistant enclosure that is 6x8x4 inches, meeting the customer 
requirement for size. Within the enclosure, there will be a Raspberry pi to act as the main computer in the 
data acquisition system. Attached to the top of the Raspberry pi will be an analog to digital converter that 
will act as the hardware to convert the analog electricity coming from the wind turbine, into a digital 
signal for the Pi to measure. Within the enclosure there will also be two shunt resistors rated at 10 amps 
and 30 amps. These resistors will be wired in a way that the ADC can measure their voltage drops at each 
end.   
 

Within the enclosure there will also be a breadboard that will have the resistance circuit wired to it to 
reduce the voltage coming from the wind turbine. This will all be kept in the base of the enclosure. The 
top of the enclosure, from the lid up, will be the 7” touch screen, mounted on a thin piece of plastic with 
holes for the ribbon connector going to the Raspberry Pi. The enclosure will also contain a cooling fan in 
one side, and cable glands on the opposite side to run wire out of the enclosure and prevent tugging of 
wires.   
 

Connected to the Raspberry Pi will not only be an ADC, but also a temperature probe, an atmospheric 
pressure sensor, and the cup anemometer. These sensors were changed from the original design that 
utilized a sense hat to measure temperature and pressure. The sense hat was replaced because the 
temperature sensor did not measure air temperature, but instead measured the temperature of the board, 
which was much warmer than the air temperature.   
 

The enclosure will be mounted to a wooden board or tripod that will have the anemometer arm mounted. 
The cup anemometer will be placed at a certain height depending on where the anemometer will be 
located in respect to the wind turbine to reduce wind measurement uncertainty. For the voltage reduction 
circuit, calculations were made to find what resistors needed to be placed in parallel and these calculations 
can be seen in Appendix C. To determine if the precision of the ADC was sufficient, calculations were 
made to see how precise of voltage measurements would be seen, and based off the engineering 
requirements the voltage had to have a resolution of <0.005 volts, these calculations can also be seen in 
Appendix C. The rough CAD drawing of the final model enclosure can be seen below in Figure 11, and 
the actual enclosure as seen on Amazon can be seen in Figure 12.  
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Figure 11: CAD Drawing of Enclosure  

  

  
Figure 12: Amazon Enclosure Figure   

  
3.2 ​Implementation Plan  
To implement the team’s design, an initial prototype was created where the Raspberry pi utilized the sense 
hat to measure temperature and pressure and recorded it in a google sheet. For the next prototype, the 
team will utilize the ADC, a temperature probe, a cup anemometer, and a simple voltage reduction circuit. 
The ADC will be measuring the voltage output of the 5v pin of the Pi, the temperature probe will be 
plugged into the top of the ADC measuring temperature, and the anemometer will be plugged into the 
GPIO pins to measure wind speed. All of these values will be recorded into a google sheet, but the team 
plans to remove the internet connection from the system and record data a different way. This final 
prototype was built and tested during the end of the Summer semester and was found to function properly. 
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At the beginning of the Fall semester, the team acquired the enclosure, as well as the shunt resistors. Once 
these items were acquired, the team started mounting components into the enclosure, and started testing 
the voltage drops across the resistors to measure current coming from the wind turbine. The expected 
enclosure appearance can be seen in the CAD drawings. An exploded view of the CAD was not necessary 
as the enclosure is a one-piece component and each item in the enclosure is very simple. Being able to 
measure the current has been the longest process in the creation of this system, along with the 
implementation of functional python files. By the end of the fall semester, the team will have created a 
fully functional wind turbine data acquisition system that will effectively and accurately measure 
temperature, pressure, wind speed, voltage, and current. The components of the system can be seen in the 
Bill of Materials as seen in Appendix B.  
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4 ​ Project Management – Second Semester 
4.1 ​Gantt Chart 
For the fall semester, the team really needed to focus on finishing up the python coding and making sure 
the physical design worked as it should. With that goal in mind, the team worked tirelessly to develop 
functional code that would work with all sensors and not only record data, but also plot the live data. 
Figure # shows the Fall semester Gantt chart used by the team to track these goals and other assignments 
throughout the semester. There are goals on this Gantt chart such as programming goals, hardware goals, 
and presentation goals. Utilizing this schedule helped keep the team on track to finish the last semester 
effectively.  

 

Figure 13: Gantt Chart 

4.2 ​Purchasing Plan 
For the team to adequately create a wind turbine data acquisition system, money had to be sepent on many 
parts. The team was given a budget of $1500 for the entirety of the project, so all expenses had to stay 
under this maximum limit. The team was able to create the fully functional data acquisition system by 
only spending about 35% of the overall budget. The most expensive parts were the extra Raspberry Pi, 
and some of the other computational equipment. The sensors, wiring, and enclosure were fairly 
inexpensive and really helped the team create a quality product. Some parts like the touch screen and 
metal for the component subplate and screen base were provided free of charge by either the university or 
from spare parts the team members had laying around. Appendix B shows the full bill of materials that 
includes all the parts that comprise the sind turbine data acquisition system. Figure # shows the 
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purchasing plan, or all the parts the team had to purchase as part of the budget provided by the university. 
This purchasing plan as well as the bill of materials drastically changed from purchasing plan and bill of 
materials from the summer semester. As the design process continued for the team throughout the fall 
semester, some parts didn’t work, or the team realized other parts were needed, so these parts were 
purchased and added to the plans.   

 

 

Figure 14: Purchasing Plan 

4.3 ​Manufacturing Plan 
The team was able to create a system that did not require much manufacturing. The system is comprised 
of an electrical enclosure that has user interface ports on the bottom. These ports had to be installed by 
drilling large holes into the enclosure. This allowed the team to create a water resistant, clean, and easy to 
use system by adding USB ports, USB C power in, HDMI adapter, Anderson Power pole voltage in and 
out, and a cable gland for the temperature sensor and anemometer wiring.  

The screen base was created to allow the team to utilize a touch screen with the system. This was a big 
thing for the team, as it was desired that the system could work in multiple scenarios, either with the lid 
closed with the use of a keyboard and mouse, with the lid open as a touch screen, or with the lid closed 
utilizing a keyboard and mouse and the use of an external monitor. The screen base is simply a piece of 
steel with a hole cut into the middle to allow the processing board of the screen to have wires running to it 
and the ribbon cable for the screen itself. Also mounted to the screen base is the voltage amplifier for the 
anemometer. This device is mounted on the underside of the screen base to maintain a clean and 
organized look for the system.  

The component subpanel is what houses all the main parts of the system. Figure 15 shows the component 
subpanel and all the devices mounted to it. The subpanel is made of painted steel, and has multiple holes 
drilled into it for the mounting of two shunt resistors, the raspberry pi, and perf boards. The shunt resistors 
are wired to the Anderson power pole connectors on the side of the enclosure. Four wires are going form 
the shunt resistors into the ADC channels (10 A: IN0 and IN1, 30A: IN2 and IN3). These wires allow the 
ADC to measure differential input signals from the resistors to measure current. Other wires are coming 
from the other sensors into the Raspberry Pi. The barometric pressure sensor utilizes the SCL and SDA 
pins of the Pi to send data, the temperature probe uses the D4 pin of the Pi to send data, and these two 
sensors also use 3V and ground pins to power them. These are all wired onto the perf boards for a cleaner 
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wiring system.  

There are two perf boards in this system, the top one, or the one that is most clearly visible in the figure 
shown below is for the temperature and pressure sensing boards. The perf board underneath this board is 
for the voltage reduction circuit, which has resistors soldered onto the board with one wire coming in, 
which is receiving voltage from the Anderson Power pole connectors, and one wire going out to IN6 of 
the ADC. The Anemometer works through a voltage amplifier, that is specifically set to receive a 5V 
input, and output a 9V signal constantly. This allows the anemometer to work correctly and still output a 
signal that is small enough for the ADC to handle. The amplifier receives voltage in and ground from the 
perf board positive and negative sides and the amplifier output wires are running to the wiring for the 
anemometer that goes through the cable gland. The anemometer wire has three wires (brown=positive, 
black=negative, and blue=signal). The blue wire is connected to a brown extension wire that goes to IN7 
of the ADC. 

The last two parts of the system that were manufactured are the wiring for the screen, which are simply 
two wires coming from a 5V Pi pin, and a ground pin to power the screen. The cooling fan mount was 3D 
printed from a file online to allow the team to mount a cooling fan to keep the Pi running efficiently [8]. 
This fan requires a 3V signal and a ground pin, which are wired to the Raspberry Pi pins. Table 4 shows a 
summary of the manufacturing plan created by the team that includes the item being manufactured, who 
will make it, how long it will take, the material needed to create the part, and the location manufacturing 
will take place at.   

 

Figure 15: Component Subpanel 

Table 4: Manufacturing Plan 

Item Name​ Who will Make​ How long to make​ material​ location of manufacturing​ 

Enclosure holes​ Team​ 1 week​ Polycarbonate​ Home​ 
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Screen Base​ Team​ 1 week​ Steel​ Home​ 

Component sub plate​ Team​ 2 weeks​ Steel​ Home​ 

Cooling Fan Mount​ Team​ 1 week​ ABS​ Home (3D printer)​ 

Perf Board Circuit building​ Team​ 2 weeks​ NA​ Home​ 

Assembly of components​ Team​ 1 week​ NA​ Home​ 

 

4.4 ​Bonus/Substitution Sections – Heat Transfer Analysis 
In addition to the work done for this project, the team plans to take it a step further with a heat transfer 
analysis in another class. The team plans to utilize the Raspberry Pi, along with cooling heatsink fins and 
a cooling fan to analyze the effectiveness of the fan/heatsink combo in cooling the CPU. The Raspberry 
Pi will operate more effectively if the CPU is kept cool, so the team will do three different analysis and 
compare them to each other, one win Solid works, where a heat transfer analysis will be done to see what 
the temperature is at the top of the fins with and without a cooling fan. The second analysis will be done 
mathematically thought extended fin analysis, where the team will perform calculations to determine the 
fin efficiency and the temperature expected to be seen at the fin tip with and without the fan (forced 
convection). Lastly, the team will utilize a data acquisition system to record temperatures a the CPU 
surface and the top of the fins with and without a cooling fin, to see how real world temperature changes 
happen with the use of the heatsink fins on the processors.  
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5 ​ Final Hardware 
5.1 ​Final Hardware Images and Descriptions 
The final design and hardware that the team was able to create this semester can be seen below in Figure 
16. This final design incorporates all the previously discussed parts and python code to operate correctly. 
Figure 17 shows the final Matplotlib output of the live plotting, these graphs show up on the screen of the 
Raspberry Pi and update about every second so that live data can be seen frequently. The final enclosure 
includes USB ports, a USB C power input, HDMI adapter, Anderson Power pole connectors for voltage 
in and out, and a cable gland for temperature probe and anemometer wiring. A carrying handle was added 
to eh enclosure for easy transportation, and parts were added to the back of the enclosure to keep the 
temperature probe out of the way and provide a place for the anemometer wire to be stored when not in 
use.  

5.2 ​Design Changes in Second Semester 
The second semester brought about nearly all of the teams hardware building. Because the team only 
created a prototype the first semester, none of the actual hardware was built until the start of the Fall 
semester. At the end of the summer semester, the team had a fairly good idea of where the project was 
going to go. An electrical enclosure was already chosen, the manufacturer changed, but the overall shape 
and design of the enclosure stayed the same. The team decided to add more user interface ports, which 
was not something that was decided in the first semester. The team also decided to utilize a component 
subpanel, which was not decided in the first semester. The team was originally planning to mount all the 
components to the floor of the enclosure, which was found to possibly cause water leaking issues and 
other problems. With the use of a subpanel, the team not only was able to organize the components, but 
also add a common ground to the entire electrical system. 

 

Figure 17: Final Hardware Design 

The team also had a few sensor changes happen in the second semester. At the end of the summer 
semester, the team had acquired a sinusoidal output anemometer from the client. This anemometer was 
found to be very difficult to interface with the Raspberry Pi and the ADC, so the team decided to go a 
different direction. An Adafruit analog output anemometer was purchased instead and it worked great 
with the system. The device had to be calibrated and tested, but with the ADC that was used for the 
system, the Pi was easily able to read voltage input of the anemometer and convert it to wind speed. The 
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pressure sensor was also changed, where the original sensor purchased was found to not work well with 
python, so the team decided to keep shopping. An Adafruit barometric pressure sensor was purchased and 
worked flawlessly with Python, and was extremely accurate. 

The team did not necessarily have very many hardware obstacles other than the troubleshooting of the 
current sensing circuit and the python code. Countless hours were spent on the development of the python 
code, although Waveshare Python libraries were used to interface with the ADC, many hours still had to 
be put in to achieve a successful python code that received accurate information from all the sensors. Not 
only did the python file have to be developed to read data, but plotting and recording to a csv was also a 
big roadblock that had to be worked around. The team tried multiple different plotting libraries like 
tkinter, matplotlib, pandas, and even some dashboards to attempt to display data in a graphical user 
interface. This graphical user interface was not entirely achieved this semester, but could be a very 
feasible option for future work if an internet connection were constantly provided to the Raspberry Pi. 
Instead of a GUI, the team utilized Matplotlib to create live graphs with the animation function. These 
graphs can be seen in Figure 18.  

 

Figure 18: Matplotlib Live Graphs 

The current sensing circuit was tested and developed in two ways. First the team attempted to create the 
circuit by the use of the positive side of the voltage signal. This was found to be tedious as each input 
would require a voltage reduction circuit, hence why there are still two other resistor circuits on the 
bottom perf board. After many hours of troubleshooting, the team decided to try the negative side of the 
voltage signal, and this worked. Using the negative side of the signal allowed the team to read very small 
voltages, which was possible due to the high accuracy of the ADC, and then develop the python file to 
read differential signals. The use of the negative signal also allowed the team to create a common ground, 
but caution had to be taken as to what was attached to this common ground, and it is charged higher than 
the normal ground provided by the Pi. Altogether, the team was able to create a safe and reliable system 
that meets all the specification requirements provided by the client.  
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6 ​ Testing 
This section of the report discusses the testing that the team performed to ensure the data acquisition 
system designed is able to meet the customer and engineering requirements. All requirements were met 
by the team, but a few requirements in specific required testing to ensure the devices within the system 
worked as they should, both accurately and correctly.  

6.1 ​Testing Plan 
In order for the team to represent that the customer requirements and engineering requirements have been 
met, the team has perform numerous tests. These tests have been done to prove the validity of the project, 
and come up with calibration values if any sensors used have deviated from manufacturer calibration 
tolerances. Table 5 shows the tests that were performed to determine the validity of the system. In this 
table, each testing experiment is referenced back to the corresponding engineering and customer 
requirements, and can also be seen in the QFD.  Detailed testing plans and procedures can be seen in the 
“Final Testing Plan” document created by the team, this can be found on the team’s website. 

Table 5: Testing Plan Summary 

Experiment/Testing  Relevant Design Requirements   
Ex 1 – Temperature Range Test  ER2  

Ex 2 – Pressure Range Test  ER3  
Ex 3 – Voltage/ Current Test  ER4, ER5, CR8  

Ex 4 – Wind Speed Test  ER1  
EX 5 – Graphing and Recording Test  CR2, CR3, CR4  

 

6.2 ​Testing Results 
The team successfully completed each test by following the procedures outlined in the “Final Testing 
Plan” document. The results of these test can be seen in this section. The team created specification sheets 
to help track the completion of testing plans and client acceptance for each test. This specification sheet 
shows the target value provided by the client, the measured/calculated value found in the tests, and 
whether or not the requirement was met by the team, and whether or not the client accepts the 
measured/calculated value found in the tests. Table 6 shows the specification sheet for the engineering 
requirements, and Table 7 shows the specification sheet for the customer requirements.  

Table 6: Engineering Requirements Specification Sheet 

​ 
Engineering  
Requirement ​ 

​ 
Target ​ 

​ 
ER  

Tolerance ​ 

​ 
Measured/Calculated 

Value ​ 

​ 
Requirement 
Met? (Y/N) ​ 

​ 
Client 

Acceptable? (Y/N) ​ 

​ 
ER1: Measure 
Wind Speed   ​ 

​ 
0-25 m/s ​ 

​ 
NA​ 

​ 
 0-25 m/s​ 

​ 
Y ​ 

​ 
 ​Y 

​ 
ER2: Measure 
Temperature   ​ 

-25-100 ֯F ​ ​ 
NA ​ 

-25-100 F​ 
 ​ 

​ 
Y ​ 

​ 
 ​Y 
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​ 
ER3: Measure 

Pressure    ​ 

​ 
~0.75 bar ​ 

​ 
NA ​ 

​ 
Flagstaff Conditions 

0.79 bar ​ 

​ 
 Y​ 

​ 
 ​Y 

​ 
ER4: Turbine 

Voltage   ​ 

​ 
0-48V ​ 

​ 
< ±.05 V ​ 

​ 
0-48 V  ​ 

​ 
Y ​ 

​ 
 Y​ 

​ 
ER5: 

Current   ​ 

​ 
0-10A ​ 
0-30A ​ 

​ 
< ±.01A ​ 

​ 
0-10A​ 
0-30A ​ 

​ 
Y ​ 

​ 
Y ​ 

 

Table 7: Customer Requirements Specification Sheet  
​ 

CUSTOMER REQUIREMENT ​ 
​ 

REQUIREMENT MET? 
(Y/N) ​ 

​ 
CLIENT ACCEPTABLE?  (Y/N) ​ 

​ 
CR1: Small Enclosure  ​ 

​ 
Y ​ 

​ 
 Y​ 

​ 
CR2: Display Gauges and Graphs   ​ 

Y​ ​ 
Y​ 

​ 
CR3: Display Live Data, Track 

Historical Data   ​ 

​ 
 Y​ 

​ 
Y​ 

​ 
CR4: Downloadable to excel file   ​ 

Y​ 
 ​ 

​ 
Y​ 

​ 
CR5: Cost Within Budget   ​ 

​ 
Y ​ 

​ 
Y​ 

​ 
CR6: Durable and Robust Design   ​ 

​ 
Y ​ 

​ 
Y​ 

​ 
CR7: Reliable Design   ​ 

​ 
Y ​ 

​ 
Y​ 

​ 
CR8: Safe to Operate   ​ 

​ 
Y​ 

​ 
 Y​ 

 
To achieve such results from the testing plan, the team performed the wind speed test by utilizing a 
constant wind source, and compared the readings of a BT-846A anemometer to calibrate the device. 
Similar procedures were completed for the temperature sensor and the voltage reading ADC. For the 
temperature probe, the team used a DTT-1372 as the standard thermometer to calibrate the temperature 
sensor used in this project. Hot water and cold water were used, and a calibration curve was found. The 
voltage reading circuit utilized a variable power supply and load to maintain a constant voltage input to 
the ADC. This constant input was compared to the actual reading of the Raspberry Pi and a calibration 
curve was created for this device as well. In total, three calibration curves were created, and they can be 
seen in Figure 16, 17, and 18.  
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Figure 16: Adafruit Anemometer Calibration Curve 

 

   
Figure 17: Temperature Sensor Calibration Curve 
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Figure 18: ADC Voltage Reading Calibration Curve  

 
These calibration equations were added into the Python files for reading and recording data to ensure 
accurate and correct data was being recorded. These Python code files can be seen in Appendix D. Testing 
of the Barometric pressure sensor was not as in depth as some of the other sensors, but it was tested. To 
test the sensor, the team compared the readings to that of other nearby weather stations, and compared to 
calculations. Calculations for the testing of the pressure sensor can be seen in the “Final Testing Results 
Presentation” which can be found on the team’s website. The results of this calculation showed the 
pressure sensor was reading correctly, because the equation calculated pressure based off elevation, which 
was found to be about 2173 m, and the equation brough about an answer of 0.7863 bar, the pressure 
sensor read about 0.782255 bar.  
 
The water resistance test was completed by using a spray bottle with water in it. Water was sprayed onto 
the top of the enclosure while it was closed, and the inside of the enclosure was inspected for any leakage 
of water. The enclosure did a good job of keeping all water out for this test. Although the test was 
successful, the enclosure would not handle complete submersion in water due to the user interface ports 
not being entirely sealed. This is an acceptable design aspect, and the team will still continue to try to seal 
the enclosure with the use of silicone gasket material to keep water out of the ports cut into the enclosure.  
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7 ​ RISK ANALYSIS AND MITIGATION 
This section discusses the failure modes and effected analysis (FMEA) that the team completed in the first 
semester, and the actions taken to avoid these potential failures in the design stage of the second semester. 
Design decisions were made to mitigate or remove the possibility of these failures happening, and 
changes were made to python code files to make readings as accurate as possible.  

7.1 ​Potential Failures Identified First Semester 
In order for the team to know the validity and sustainability of the design created, a failure modes and 
effected analysis (FMEA) needed to be created. During the first semester, the team created an FMEA of 
expected failures that could be seen within the designed system. The current and full FMEA can be seen 
in Appendix C, which shows all of the potential failures that the team expected to see in the design stage 
of the second semester. These failures include mostly measurement device failures such as the 
temperature probe, the barometric pressure sensor, the anemometer, the voltage sensing circuit, and the 
current sensing circuit. Other failures include the voltage reduction circuit, and the ADC not working 
correctly.  

7.2 ​Potential Failures Identified This Semester and Risk Mitigation 
The team encountered nearly every potential failure in one way or another during the second semester. 
Most of these failures were corrected and the system is expected to work properly in the future. For 
example, the temperature sensor was originally found to work properly until testing, where it was found 
the sensor was highly inaccurate at lower temperatures. The team calibrated the sensor and added the 
calibration equation into the Python code so that accurate temperatures would be given to the user. The 
first barometric pressure sensor purchased by the team was a good sensor, but it did not interface easily 
with Python. Because the sensors were inexpensive, the team purchased another sensor that worked better 
with the code. This sensor worked great and was highly accurate, so no actual failures were seen with this 
device other than simply converting sensor units to the required unit of bar.  

The anemometer had a similar situation to the temperature sensor, where it was found to be fairly 
inaccurate. The team performed a calibration on this device that basically created a new equation to 
convert voltage to wind speed. The equation provided by the manufacturer was not working, and the new 
equation works correctly when compared to a known accurate wind speed sensor. Measuring voltage and 
current was found to be inaccurate with the ADC used by the team due to “ghosting” across channels. The 
team was unable to remove ghosting from the ADC, but a calibration was completed and mostly removed 
any inaccuracies caused by ghosting.  

Being able to measure the voltage was a task that took the team a while to complete. During the building 
process, the team tried multiple resistor combinations until the correct one was found. The team was able 
to basically create a circuit that reduced voltage by dividing voltage by 100 (i.e. 32 v input is 0.32 v into 
the ADC), this was accomplished by the use of a 1 kilo Ohm resistor in parallel with a 10 ohm resistor. 
The current sensing circuit was another difficult task for the team where heavy testing was completed to 
ensure an accurate and safe current sensing circuit. The team tried both positive and negative flow 
through the shunt resistors to read voltage drops. It was found that the negative side was best because of 
the lower voltage read by the ADC in this situation. This ensured that the ADC never saw a voltage above 
the maximum input of 2.5 v. This was a potential critical failure for the system, and it was successfully 
mitigated by the use of hardware by the team.  

Failure number 7 seen in the FMEA was not seen by the team because a good quality ADC was initially 
chosen. There were many different ADC devices on the market that could have been used, but the team 
chose the Waveshare high precision ADC as the device used in the project. This device had extremely 
high accuracy and code for the ADC was already developed. Although code was already given for this 
device, the team had to make heavy modifications to allow the code to work with all other devices. The 
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voltage division circuit previously discussed ensures that the ADC will not be overcharged, and the use of 
shunt resistors wired on the negative side of the input voltage ensured very small voltage signals seen by 
the ADC for current sensing. This potential failure was successfully mitigated by the use of these 
hardware components.  
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8 ​ LOOKING FORWARD 
The team is confident that they have created a good quality, highly accurate, and reliable data acquisition 
system. Any design can be improved upon, so this section will discuss what could possibly be done to the 
system to make it work even better.  

8.1 ​Future Testing Procedures 
For the Wind turbine data acquisition system to be improved, we think the best thing for it would be to 
develop a GUI. Most GUIs for Raspberry Pi’s work great with online capabilities, which we were unable 
to develop due to the requirement of being operable without internet. An internet independent GUI was 
started and can be found on the Pi by following the path /home/pcc/Gui Tests. These three files were as 
far as the team was able to get with the GUI, and it can be further developed by another team.  

The team also tried to calibrate the sensors to the best of their ability with the resources they had. This 
could be taken a step further by acquiring more accurate temperature standards, or a wind tunnel to 
calibrate the anemometer. The ADC is also not perfect, for some reason the device experiences ghosting, 
and this voltage gets distributed across all channels no matter what the voltage input of the individual 
channel is. This does have a solution, but the team did not have time to resolve it this semester. This 
device could be significantly more accurate if the ghosting was resolved.  

8.2 ​Future Iterations 
This project could be modified by adding GUIs like previously discussed, or by using different hardware. 
The Raspberry Pi is not made to work well with analog inputs, and an Arduino may be more suitable for 
measuring voltage and current. This could be a change that could make this system better. The team really 
wanted to add a tripod or some kind of mounting hardware to the electrical enclosure to make it more user 
friendly. In some of the design stage ideas, the team drew out a design that included a tripod, and a place 
for the keyboard and mouse to be placed. This would greatly enhance the user experience with the system 
if things like this were added. Other than these small changes, the system has been designed to do very 
specific work, and the enclosure chosen is so small and compact that adding any more hardware would be 
a difficult task, so the system is confined on space, and not many changes can be made to the overall 
hardware functionality of the system.  

Although space within the enclosure is limited, a possible lithium ion battery could be added to make the 
system completely standalone and portable. Adding a battery could be an interesting capstone project for 
an Electrical engineering major to learn more about batteries and the wattage and voltage consumption 
analysis that goes into using such power sources.  
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9 ​ CONCLUSIONS 
In conclusion, the Design Requirements, updated Functional Decomposition, Standards and Codes, 
Testing Procedures, Risk Analysis and FMEA, Critical Failures, Risks and Trade-offs Analysis, Design 
Description, and Implementation Plan are presented in this report, and each of them is updated from time 
to time and thoroughly reviewed. So far, the team has successfully acquired data from the environment 
and stored data in the local files. Besides, all the sensors used for the future design process are collected. 
The final prototype, together with all the documents needed to build it are presented to the project client. 
The team has been working hard to achieve the goal of designing and building a PCC (point of common 
coupling) data collection system out of inexpensive hardware and relatively free software. The team has 
finished all the engineering requirements and customer needs as outlined in the course rubric and from 
weekly client meeting. The team has written a new code to measure the data of temperature, pressure, 
voltage, and wind speed at the same time, and plotting these data using Matplotlib. The team also finishes 
the testing procedure to ensure the accuracy of acquired data. 
9.1 ​Reflection 
The team was able to create a wind turbine data acquisition system that met all the requirements of the 
client. Not only did the team successfully meet all the requirements, but mor importantly, the team created 
a system that could potentially help with creating a cleaner wind energy environment. With the creation of 
a power curve, which is wind speed vs power output, the data acquisition system could show the user how 
well the wind turbine can output power based off wind speed.  
 
The team really wanted to ensure the system was safe to operate, and it is believed to have successfully 
accomplished that. The main concern for safety with the system would be associated with the voltage 
sensing and current sensing circuits. When creating the voltage division circuit, the team could have used 
resistors to divide the voltage by a small amount, while still staying beneath the ADC 2.5 volt maximum 
input. Instead, to maintain safety to both the user and the hardware components of the system, the team 
divided the circuit by 100 to ensure voltage would nearly never get above this maximum input. If the 
voltage did get above the maximum, the system would be operating outside of its required parameters. 
As previously discussed, the team utilized the negative signal for the current sensing circuit to maintain a 
low voltage for the ADC to measure, because the ADC is so accurate, this is possible. By choosing such 
hardware and wiring options, the team can ensure the electrical circuits within the machine are safe and 
reliable.  
9.2 ​Resource Wishlist 
This project definitely would have went better with some more resources. The project was constrained to 
be within a certain size and to use relatively inexpensive hardware. The team met the budget constraint 
very easily, but looking back, more expensive hardware could have been used. More specialized 
equipment would have been useful for calibrations and testing. The team was set up to work with only 
two students, which worked fairly well for this project, but it was a little heavy in the coding area, which 
was difficult because both students are ME majors and did not have a whole lot of experience with Python 
or similar coding types.  

9.3 ​Project Applicability 
Spencer: 
This project has really helped me learn a lot more about programming, which was one of my weaknesses 
coming into this project and definitely one of the things I dreaded working on for the project. Learning 
how to interpret existing code and learning how to write code from scratch was interesting and sometimes 
fun. In my time with W.L. Gore, I have used a data acquisition system or two, which was interesting to 
see the background associated with such machines. I plan to continue my learning with programming, and 
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learn to apply it to my professional career and to my hobbies by working with Arduinos and Raspberry 
Pi’s some more. I think with the way the engineering world is going, computer skills and programming 
skills are going to be absolutely vital to the success of engineering projects and engineering careers. I am 
excited to apply what I have learned and maybe even take more training/classes outside of my Bachelor’s 
degree to learn more about computer programming and apply them to my personal career. I have 
thoroughly enjoyed learning new skills and learning through application of engineering fundamentals 
throughout this project, and I hope the next group is able to improve on our design and make it even 
better.  
 
Xuefeng: 
 
I have learned a lot from this project, both for professional knowledge and extracurricular abilities. This is 
the first time for me to learn and use Python to write codes. As a mechanical engineering major student, I 
have been thinking about learning and strengthening my coding abilities since computer science is the 
most popular major on the job market. Throughout this project, I successfully learned Python together 
with its libraries. I also learned how to use raspberry pi and multiple sensors to collector data from the 
environment. Raspberry pi is important in the engineering world for its convenience and functionality. In 
addition to the Python and raspberry pi, I also get the chance to work with a team under the guidance of a 
professor in an English environment. As an international student, it is important for me to strengthen my 
English communication skills. Besides, working as a team requires more than your individual abilities. 
How to successfully works as a team requires a strong communication ability. I am also proud of our final 
product, it looks good and functions well.  
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11 ​APPENDICES 
11.1 ​ Appendix A: House of Quality or Functional Decomposition  
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11.2 ​ Appendix B: Full Bill of Materials  
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11.3 ​ Appendix C: FMEA  
 

FMEA (Failure Modes and Effects Analysis)  
Product: Wind Turbine 
Data Acquisition System 
(PCC)   

Organization Name : Northern Arizona University Capstone Project  

 

#  Function   
Potential 
Failure 
Modes   

Potential 
Failure 
Effects   

Potential 
Causes of 
Failure   

Current 
Process 

Controls  
Recommend 

Actions  
Responsible 

Person   
Taken 

Actions   

1  

Measure 
Temperature  

Inaccurate 
Temperatures  

Loss of 
temperature 
reading ability  

Heat flashes, 
water damage, 
sunlight on 
metal probe.  

Connections to 
RPI will be in 
enclosure. 
Calibration 
will be 
performed.  

Calibration of 
probe, keeping 
probe in buffer to 
prevent 
fluctuations.  

Team  NA  

2  
Measure 
Atmospheric 
Pressure  

Inaccurate 
Pressure   

Loss of Pressure 
reading ability  

Damaged or 
defective 
pressure 
sensor  

Keep pressure 
sensing board 
in watertight 
enclosure  

Calibration of 
pressure sensor  

Team  NA  

3  
Measure Wind 
Speed  

Turbulence from 
wind turbine  

Inaccurate wind 
speed and rpm 
measurements  

Turbulence in 
wind caused 
by wind 
turbine   

Fluid dynamics 
calculations to 
ensure proper 
height of 
anemometer  

NA  Team  NA  

4  

Measure 
Voltage  

Inaccurate 
voltage  

Damage to 
electrical 
components  

Incorrect or 
defective 
resistors   

Parallel 
resistors to 
decrease input 
voltage  

Voltage resistance 
calculations, 
potentially fuses  

Team  Calculations to 
ensure voltage 
never reaches 
damaging 
voltages, consider 
fuse  

5  

Measure 
Current  

Inaccurate 
Current  

Damage to 
electrical 
components  

Incorrect 
shunt resistor, 
voltage spike  

Raspberry Pi 
code will 
interpret 
voltage drops 
and alert high 
voltage and 
current.  

NA  Team  Calculations to 
ensure correct 
shunt resistors  

6  

Reduce Input 
Voltage  

Failure to reduce 
voltage  

Damage to 
electrical 
components  

Voltage 
spikes, 
incorrect 
resistors, 
failed 
resistors  

Raspberry Pi 
code will 
interpret 
voltage and 
alert high 
voltage.  

NA  Team  Calculations for 
resistor choice, 
research into best 
resistor material 
for system   

7  

Convert 
Analog to 
Digital Signal  

Damage from 
overcharge (max 
5v)  

Overcharge from 
wind turbine 
voltage input  

Incorrect 
resistor 
choice  

Raspberry Pi 
code will 
interpret 
voltage and 
alert high 
voltage.  

Use correct 
resistors, perform 
calculations for 
multiple 
combinations, test 
before charging 
circuit  

Team  Calculations for 
resistance  
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11.4 ​ Appendix D: Python Code 
11.4.1 ​ Main Python File 
import csv 

from time import gmtime,strftime 

import time 

from w1thermsensor import W1ThermSensor 

import board 

import adafruit_mpl3115a2 

import sys 

import csv 

import os 

import ADS1263 

import RPi.GPIO as GPIO 

 

sensor = W1ThermSensor() 

fieldnames = ["time", "temperature","pressure","Wind Speed", "Voltage in","10A 
Current","30A Current"] 

i2c = board.I2C() 

sensor2 = adafruit_mpl3115a2.MPL3115A2(i2c) 

pressure = sensor2.pressurei2c = board.I2C() 

pressure = (sensor2.pressure)/1000 

sensor2.sealevel_pressure = 1013 

 

with open('Temperature_And_Pressure.csv', 'w') as csv_file: 

    csv_writer = csv.DictWriter(csv_file, fieldnames = fieldnames) 

    csv_writer.writeheader() 

 

REF = 5 

REF2  = 2.5 

TEST_ADC2       = True   

 

try:     

    ADC = ADS1263.ADS1263()    

    if (ADC.ADS1263_init_ADC1('ADS1263_7200SPS') == -1): 

        exit()     

    ADC.ADS1263_SetMode(0) 

    if(TEST_ADC2): 

        while(1): 

            temperature = sensor.get_temperature() 
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            ADC_Value = ADC.ADS1263_GetAll() 

            for i in range(6,7): 

                if(ADC_Value[i]>>31 ==1): 

                    Vin_WindSpeed1 = (strftime("%H:%M:%S", gmtime()),",","speed%d = 
%lf" %(7, (ADC_Value[7] * REF / 0x7fffffff)*100)) 

 

                else: 

                    Vin_WindSpeed2 = [] 

 

                    with open('Temperature_And_Pressure.csv', 'a') as csv_file: 

                        csv_writer = csv.DictWriter(csv_file, fieldnames=fieldnames)        

                        info = { 

                            "time": strftime("%H:%M:%S",gmtime()), 

                            "temperature": 0.6583*temperature+6.9051, 

                            "pressure": pressure, 

                            "Wind Speed": ((((26.789*(ADC_Value[7] * REF / 
0x7fffffff)-11.335)))), 

                            "Voltage in": ((ADC_Value[6] * REF / 0x7fffffff)*100), 

                            "10A Current": (((ADC_Value[1] * REF2 / 
0x7fffffff)-(ADC_Value[0] * REF2 / 0x7fffffff))/0.0075), 

                            "30A Current": (((ADC_Value[3] * REF2 / 
0x7fffffff)-(ADC_Value[2] * REF2 / 0x7fffffff))/0.0025) 

                            } 

                        csv_writer.writerow(info) 

                        print(strftime("%H:%M:%S",gmtime()), 
0.6583*temperature+6.9051, pressure, (26.789*(ADC_Value[7] * REF / 
0x7fffffff)-11.335), (0.964*(ADC_Value[6] * REF / 
0x7fffffff)*100)-0.3947,(((ADC_Value[1] * REF2 / 0x7fffffff)-(ADC_Value[0] * REF2 / 
0x7fffffff))/0.0075),(((ADC_Value[3] * REF2 / 0x7fffffff)-(ADC_Value[2] * REF2 / 
0x7fffffff))/0.0025))  

                        time.sleep(0.25) 

 

    ADC.ADS1263_Exit() 

 

except IOError as e: 

    print(e) 

     

except KeyboardInterrupt: 

    print("ctrl + c:") 

    print("Program end") 

    ADC.ADS1263_Exit() 

    exit() 
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11.4.2 ​ ADS1263 
This code is very lengthy and will not be added to this document, this code was used from Waveshare’s 
website and can be found by following the link in reference # 

11.4.3 ​ Config 
import os 

import sys 

import time 

 

class RaspberryPi: 

    # Pin definition 

    RST_PIN     = 18 

    CS_PIN      = 22 

    DRDY_PIN    = 17 

 

    def __init__(self): 

    # SPI device, bus = 0, device = 0 

        import spidev 

        import RPi.GPIO 

         

        self.GPIO = RPi.GPIO 

        self.SPI = spidev.SpiDev(0, 0) 

 

    def digital_write(self, pin, value): 

        self.GPIO.output(pin, value) 

 

    def digital_read(self, pin): 

        return self.GPIO.input(pin) 

 

    def delay_ms(self, delaytime): 

        time.sleep(delaytime / 1000.0) 

 

    def spi_writebyte(self, data): 

        self.SPI.writebytes(data) 

         

    def spi_readbytes(self, reg): 

        return self.SPI.readbytes(reg) 

         

    def module_init(self): 

        self.GPIO.setmode(self.GPIO.BCM) 

        self.GPIO.setwarnings(False) 
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        self.GPIO.setup(self.RST_PIN, self.GPIO.OUT) 

        self.GPIO.setup(self.CS_PIN, self.GPIO.OUT) 

         

        self.GPIO.setup(self.DRDY_PIN, self.GPIO.IN, pull_up_down=self.GPIO.PUD_UP) 

        self.SPI.max_speed_hz = 200 

        self.SPI.mode = 0b01 

        return 0; 

 

    def module_exit(self): 

        self.SPI.close() 

        self.GPIO.output(self.RST_PIN, 0) 

        self.GPIO.output(self.CS_PIN, 0) 

                 

if os.path.exists('/sys/bus/platform/drivers/gpiomem-bcm2835'): 

    implementation = RaspberryPi() 

 

for func in [x for x in dir(implementation) if not x.startswith('_')]: 

    setattr(sys.modules[__name__], func, getattr(implementation, func)) 

11.4.4 ​ Plotting  
 from matplotlib.animation import FuncAnimation 

import matplotlib.pyplot as plt 

import matplotlib.animation as animation 

import csv 

import pandas as pd 

import numpy as np 

 

def animate(i): 

    data = pd.read_csv('Temperature_And_Pressure.csv') 

    x = data['time'] 

    y1 = data['temperature'] 

    y2 = data['pressure'] 

    y3 = data['Wind Speed'] 

    y4 = data['Voltage in'] 

    y5 = data['10A Current'] 

    y6 = data['30A Current'] 

     

    ax.cla() 

    ax.plot(x, y1) 

    ax.tick_params(labelrotation=45) 

    ax.set_title("Temperature") 
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    ax.tick_params(labelsize = 5) 

                                

    ax1.cla() 

    ax1.plot(x, y2) 

    ax1.tick_params(labelrotation=45) 

    ax1.set_title("Pressure") 

    ax1.tick_params(labelsize = 5) 

     

    ax2.cla() 

    ax2.plot(x, y3) 

    ax2.tick_params(labelrotation=45) 

    ax2.set_title("Wind Speed") 

    ax2.tick_params(labelsize = 5) 

     

    ax3.cla() 

    ax3.plot(x, y4) 

    ax3.tick_params(labelrotation=45) 

    ax3.set_title("Voltage in") 

    ax3.tick_params(labelsize = 5) 

     

    ax4.cla() 

    ax4.plot(x, y5) 

    ax4.tick_params(labelrotation=45) 

    ax4.set_title("10A Current") 

    ax4.tick_params(labelsize = 5) 

     

    ax5.cla() 

    ax5.plot(x, y6) 

    ax5.tick_params(labelrotation=45) 

    ax5.set_title("30A Current") 

    ax5.tick_params(labelsize = 5) 

     

    plt.tight_layout() 

 

 

def animate1(frame): 

    ax.set_xlim(left=0, right=frame) 

     

fig = plt.figure() 

ax = fig.add_subplot(2,3,1) 
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ax1 = fig.add_subplot(2,3,2) 

ax2 = fig.add_subplot(2,3,3) 

ax3 = fig.add_subplot(2,3,4) 

ax4 = fig.add_subplot(2,3,5) 

ax5 = fig.add_subplot(2,3,6) 

 

ani = FuncAnimation(plt.gcf(), animate, interval=100) 

plt.show() 
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