1.	. В	[1]
2.	. C	[1]
3.	. В	[1]
4.	. В	[1]
5.	. A	[1]
6.	. с	[1]
7.	. A	[1]
8.	. С	[1]
9.	. C	[1]
10.	0. D	[1]
11.	1. B	[1]
12.	2. B	[1]
13.	3. C	[1]
14.	4. B	[1]

Mark Scheme – L6th A level – Christmas Work – Measurement and Errors

15. В

[1]

 \mathbf{C} 16.

[1]

17. (a)

half area of graph paper at least to be used; axes labels including units;

scale;

data points; ((0, 0) need not be included)

4

absolute uncertainty in Q at 10.0 V = ± 3 nC; (b) absolute uncertainty in Q at 50.0 V = \pm 18 nC;

> Or read from graph or elsewhere in the question and do not deduct unit mark.

correct placing on graph;

3

from top of error bar at (50, 180) to bottom of error bar at (10, 30); (c) use of at least half the line or algebraic indication; value = $4.3 \text{ or } 4.3 \times 10^{-9}$;

3

Watch for ecf.

(d)
$$CV^{-1}$$
;

Unit might be given in (c)

$$\varepsilon_0 A$$

recognize that the gradient $m = \overline{d}$; (e)

therefore
$$\varepsilon_0 = \frac{dm}{A}$$
;

$$= \frac{0.51 \times 10^{-3} \times 4.3 \times 10^{-9}}{0.15}$$
;

$$= 1.5 \times 10^{-11} \text{ C V}^{-1} \text{ m}^{-1} (\text{C}^2 \text{ N}^{-1} \text{ m}^{-2} - \text{data book unit or F m}^{-1})}$$
;

[15]

4

Mark Scheme – L6th A level – Christmas Work – Measurement and Errors

18. (a) a straight line / linear graph cannot be drawn that <u>lies within all the error bars;</u> 1 (b) smooth curve; that does not go outside error bars; 2 recognize that $D\lambda$ is the gradient of the graph; (c) suitable triangle $\Delta \lambda \ge 100$ nm; to give magnitude $1.15 - 1.40 \times 10^{-5} \text{ nm}^{-1} / 10^4 \text{ m}^{-1}$; negative sign; 4 recognize that A is the intercept on the n axis; (d) (i) line shown extrapolated; $A = 1.6020(\pm 0.0001);$ 3 Award full marks for correct answer with omission of first marking point award [2 max] if they find the gradient (B) and then use a data point to calculate A. (ii) it is the value of n / refractive index for an infinite wavelength / $\lambda = \text{infinity} / \text{minimum value of } n$;

[11]