
Java Best Practices!

Good, clean code must follow certain conventions in Java. Learning and using
these early on will not only enhance your coding skills, but it will also prepare you

for collaborative projects in which code quality and consistency matter. We’ll
cover some of the must-know tips below!

1.​Keep it short

When writing methods in Java, it's important to keep them short
and focused, as they are easier to read, understand, and maintain. Short,
concise methods allow you to isolate functionality, making it easy to
test your code and fix bugs, too. By keeping methods concise, you
adhere to best practices that improve the overall quality of your code.

Here is an example of a short and focused main method:

This code is considered good practice because it keeps the main method clean

and focused by delegating specific tasks to separate, short methods. In this
case, the method printGreeting() will greet the user, getPlayerName() will

store the user’s name using a Scanner, and startGame() will initiate the game.
This code can be easily read, understood, and tested by other programmers.

2.​Naming

Choosing the right names for variables, methods, and classes is
crucial for writing good, clean Java code. Following established naming
conventions not only makes your code more readable but also helps
other developers understand your intentions quickly.

a.​ Variables

Use camelCase for naming. Start with a lowercase letter, then

capitalize the first letter of each following word.

Examples include: customerAge, accountBalance, numCardsInHand…

Choose names that clearly indicate what the variable will represent. Do
not start names with _ or $. Avoid using single letters, and certain
keywords like int, float, or string.

b.​Methods

​ Just like variables, you should be using camelCasing to name
methods. Generally, these names start with verbs and describe the
functionality of the method.

Examples: calculateTotalPrice(), isRegistered(), convertToBinary()

Make sure to use consistent naming conventions for similar methods!

Example: getAccountBalance() & setAccountBalance()

c.​ Classes

​ Use UpperCamelCase for naming classes (each word starts with an
uppercase letter). Generally, these are nouns that represent objects or
concepts.

Examples: CheckingAccount or TemperatureConverter

d.​Constants

​ You should name constants with UPPERCASE letters with
underscores separating each word. Use specific words that clearly
indicate what the constant is.

Examples: MAX_USERS, OVERDRAFT_LIMIT, DEFAULT_LANGUAGE

Remember to declare your constants as static and final!

​ 3. Test, test, and test!

Testing is a fundamental aspect of software development that ensures
your programs will function correctly and efficiently.

1.​ Make sure to test early and often!

​ Write unit tests to check the functionality of individual components
of your program. Testing early helps you catch bugs and exceptions.
After testing, each individual part of your program should work as
intended, and they should be easy to make changes to if necessary.

 DO NOT WAIT UNTIL THE PROGRAM IS COMPLETE TO TEST!

2.​ Important Testing Considerations

​ Make sure that you set up the testing data and environment before the
assert statement.

In this example, a ShoppingCart object is created and filled with two items before
testing the calculateTotalPrice() method.

Use assertEquals, assertTrue, and assertThrows over the generic assert.

Provide clear and custom failure messages, too!

Example: assertEquals(expected, actual, "Total price should match the sum of item prices");

​ 4. Comments

Writing good comments is crucial for all programs that you will write
for this and future courses. Writing clear comments will mean that your code
can be easily understood by others and shortens time spent debugging.

a.​ Try to explain why, not what (your thoughts vs what the code is
doing)

A comment like //Use binary search for efficient look-up in the sorted list is
great because it explains why binary search is used, not what the code is actually
doing.

b.​ Avoid repeating or unnecessary comments

Don’t just state the obvious, not every line needs to be commented. When
declaring a simple variable or using an assignment statement, let the code speak for
itself.

c.​ Write clear Java Docs

Write javadocs for each method and class you create! Start with a brief summary of
what the method or class will do / represent. Use tags like @param or @return so
anyone who reads the javadoc can make things clear

5. Common Mistakes

1.​ Long, Complicated Method
Long methods are harder to read, test, and maintain. Break down large methods

into smaller, single-purpose methods.

2.​ Inconsistent Naming Conventions
Inconsistent naming makes the code harder to read and understand. Stick to

established naming conventions: camelCase for variables and methods,
UpperCamelCase for classes, and UPPERCASE for constants.

3.​ Not Testing Early or Often Enough

I cannot stress this enough. Delaying testing increases the chances of
undetected bugs and makes debugging harder. Write unit tests as you

develop each feature. Test small parts of your program independently before
integrating them.

4.​ No Magic Numbers

Hardcoded values make the code less readable and harder to update if the
values need to change. Define these values as constants with descriptive

names, making it easier to adjust the value in one place if needed.

5.​ Lack of / Poorly Written Comments
No comments make code harder to understand, especially for others.
Redundant comments clutter the code without adding useful context.

Write meaningful comments explaining the "why" behind complex logic,
and use Javadoc for documenting methods and classes.

