

Meshery Adapters

Adapting to Cloud Native Infrastructure

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

Design Prologue​ 3
Guiding Principles for Adapter Design​ 3
Design Goals​ 3
Architecture Diagram​ 4

Adapters​ 4
Repositories​ 5
Design Objectives​ 5

Meshery User Interface​ 5
Design Objectives​ 6

Tests​ 6

Documentation​ 6
Design Objectives​ 6

Continuous Integration​ 7

Development​ 7
Running the adapter as a container​ 7
Running the adapter as a process​ 8
Using gRPCurl to interact with the adapter​ 8

Refactor: Common (Adapter) Libraries​ 9
Forming the basis of the common adapter library​ 9

Refactor: Adapter parametrization​ 10

Refactor: Adapter configuration​ 11

Security​ 11

Misc​ 11

The structure design for the codebase​ 11
General​ 11
The Adapter code​ 11
MeshKit​ 12
Module Dependencies​ 14
Errors​ 14
The meshery-adapter-library​ 14

Purpose​ 14
Overview and usage​ 14
Package dependencies hierarchy​ 15

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

Generating cloud native infrastructure Pattern Components​ 16
Generating and bundling pattern components at buildtime​ 16
Generating pattern components at runtime​ 17

System Flow: cloud native infrastructure Resources​ 17
System Flow: Kubernetes Native Resources​ 17

Adapter Component Support​ 18

Glossary
MeshOps v1 - manifest-based operations.
MeshOps v2 (aka PatternOps) - component-based operations.

Design Prologue
Adapters are a point of pride for Meshery in the fact that Meshery connects to as many cloud native
infrastructurees as it does, which is more than any other project / product in the world. Meshery
supports management of more cloud native infrastructurees than any other project or product
available. That said, Meshery is still egregiously missing support for a few of the more popular cloud
native infrastructurees (listed below).

Of the adapters to be completed, each already has some work done toward their completion and
are in a similar state. Each adapter is currently in an “alpha” state. They are in this state given that
each was created from an adapter template.

Upon completion of the design objectives each adapter should achieve a “stable” state.

Guiding Principles for Adapter Design

1.​ Adapters allow Meshery to interface with the different cloud native infrastructurees,
exposing their differentiated value to users.
cloud native infrastructure projects should be encouraged to maintain their own adapters.
Allowing them to expose their differentiated capabilities encourages this.

2.​ Adapters should avoid wheel reinvention, but seek to leverage the functionality
provided by cloud native infrastructurees under management.

​ This both reduces sustaining costs and improves reliability.

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

Design Goals
In support of the Guiding Principles for Adapter Design, the following design goals are established.
The designs in this specification should result in enabling:

1.​ cloud native infrastructure-specific logic should be separated from the mechanism by which
Meshery communicates with each cloud native infrastructure.

2.​ For example, when deploying a cloud native infrastructure, seek first to leverage the native
deployment methodology supported by the specific cloud native infrastructure (e.g.
Kubernetes manifests, Helm chart, Operator…).

a.​ This is caveated by the need to adhere to DRY principle as much as possible, so as to
reduce sustaining effort across the adapters.

b.​ Ideally, each adapter is able to leverage a deployment methodology supported by
the common adapter library. Commonly, this will be:

i.​ Deployment by Kubernetes Manifest
ii.​ Deployment by Helm Chart
iii.​ Deployment by cloud native infrastructure Operator

iv.​ Deployment by <service-mesh>ctl

1.​ (There will be the occasion where use of a cloud native
infrastructure's go client will be of importance as we go to leverage
the same go client in MeshSync. `istioctl` is an example of this.)

c.​ Use go clients, not shell where possible.

Architecture Diagram
See the Meshery Architecture for visuals on how its logical constructs relate to one another.

Adapters
Adapters allow Meshery to interface with the different cloud native infrastructurees. Adapters allow
Meshery to interface with the different cloud native infrastructurees, exposing their differentiated
value to users. See Adapters documentation for more information.

As documented in Extensibility, Meshery server communicates with Meshery adapters over gRPC.
Each adapter is assigned a specific TCP port, starting from 10000. Upon connection between
Meshery server and an adapter, the adapter’s list of capabilities will be ingested. An adapter’s
capabilities are a predefined set of operations which are grouped based on predefined operation
types. The predefined operation types are:

●​ Install
●​ Sample application

https://docs.google.com/presentation/d/1SQMfyu5shjpGKlYONdVzOtd7UYTgLWBcgUvHMLCZ2tY/edit#slide=id.g8b59c65a6a_0_249
https://meshery.layer5.io/docs/architecture/adapters
https://meshery.layer5.io/docs/extensibility#service-mesh-adapters

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

●​ Config
●​ Validate
●​ Custom

 Adapters establish communication with Kubernetes and a specific type of cloud native
infrastructure. Multiple adapters of the same type may be deployed concurrently. Although, this isn’t
strictly necessary for Meshery to communicate to more than one instance of the same type of cloud
native infrastructure. See the Multiple Adapters guide for more information.

Repositories
Adapter repositories are created from the same adapter template (from the same code base).
Adapters listed in priority order of delivery (links to repositories):

1.​ meshery-kuma
2.​ meshery-app-mesh
3.​ meshery-tanzu-sm
4.​ meshery-maesh

While this list reflects the ideal order (the priority order) in which adapters will be delivered,
circumstances may change the order in which they are delivered.

Design Objectives
The designs in this specification should result in supporting each of the predefined types of
operations.

1.​ Install
a.​ Install and delete should be functional.
b.​ Multiple deployment configurations should be offered.

i.​ Selecting cloud native infrastructure version
ii.​ Selecting method of deployment (helm, k8s manifests, CLI)

2.​ Sample application
a.​ Layer5 Image Hub and Istio Book Info should be available in all adapters as sample

applications.
b.​ Each cloud native infrastructure’s canonical sample application should be supported

by the respective adapter.
c.​ Install and delete should be supported for each application.

3.​ Config
a.​ Support a set of predefined cloud native infrastructure configurations.

4.​ Validate
a.​ At least 5 validation rules should be delivered per adapter.

5.​ Custom
a.​ Allow any custom-defined configuration to be sent to the cloud native infrastructure.

https://meshery.layer5.io/docs/guides/multiple-adapters
https://github.com/layer5io/meshery-kuma
https://github.com/layer5io/meshery-app-mesh
https://github.com/layer5io/meshery-nsx
https://github.com/layer5io/meshery-maesh

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

Meshery User Interface
Each adapter should have an adapter chip (a button in the Meshery UI).

Design Objectives
Each adapter chip (button) should:

1.​ allow the user to invoke an ad hoc connectivity test to verify connection between Meshery
server and adapter.

2.​ show the full name of the adapter.
3.​ show port assignment.
4.​ include the logo of their respective cloud native infrastructure.

a.​ one full-color icon and the other in grayscale (for the left side navigation menu).
b.​ logos should be in SVG format.

Tests
Each adapter should have unit tests covering its various functions. Ideally, unit tests will have 100%
code coverage of adapter functionality, though minimally, must have at least 50% of code coverage.

Before creating a pull request, an adapter should be tested

●​ as a process (Running the adapter as a process)
●​ as a container (mesheryctl, Running the adapter as a container)
●​ in a Kubernetes cluster (e.g. Minikube, KinD, microk8s), ​

see https://github.com/layer5io/meshery/tree/master/install

Documentation
Documentation needs to be accounted for with each new function or change of existing project
behavior. Each adapter needs to have it’s own documentation page, and multiple sites (meshery.io,
docs.meshery.io, layer5.io) need to be updated to reflect these changes and the status of these
adapters.

Design Objectives
1.​ Each adapter needs to have it’s own documentation page (docs.meshery.io).

a.​ Meshery Adapter for Kuma
b.​ Meshery Adapter for App Mesh
c.​ Meshery Adapter for Tanzu SM

https://github.com/layer5io/meshery/tree/master/install
https://meshery.layer5.io/docs/service-meshes/adapters/kuma
https://meshery.layer5.io/docs/service-meshes/adapters/app-mesh
https://meshery.layer5.io/docs/service-meshes/adapters/tanzu-sm

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

d.​ Meshery Adapter for Maesh​

2.​ Each adapter documentation page should provide users with an overview of each of the
adapter’s functions and sample apps.​

3.​ Each adapter documentation page should include an architectural diagram of a deployment
of the specific cloud native infrastructure.

a.​ The diagram should use the project's color scheme and look similar in design to the
other diagrams within the project.

b.​ Google Draw, Google Slides, or Adobe Illustrator (or other) programs may be used to
create the diagram. Existing project diagrams may be leveraged.​

4.​ meshery.io and layer5.io/meshery should be updated to reflect adapter status.

Continuous Integration
1.​ Each adapter should have a CI workflow that builds and passes all checks.
2.​ All code should be checked using GolangCI-Lint (https://github.com/golangci/golangci-lint),

see https://github.com/layer5io/meshery and https://github.com/layer5io/meshery-consul
for example configurations.

3.​ CI workflows should build and push Docker images to Docker Hub
4.​ Security scanning

Development
Development follows the usual fork-and-pull request workflow described here, see also GitHub
Process. On forking GitHub deactivates all workflows. It is safe and good practice to activate them
such that the code is validated on each push. This requires that branches filter for “on push” is set to
‘**’ to be triggered also on branches containing ‘/’ in their name. The actions are parameterized
using secrets (see Build & Release Strategy). The Docker image is only built and pushed to Docker
Hub if a tag is pushed and the corresponding authentication information is configured. The only
secret that should be set in each fork is GO_VERSION, specified in Build & Release Strategy,
otherwise, the corresponding action’s default version is used.

Each commit has to be signed off, see Contributing Overview.

Running the adapter as a container
Testing your local changes running as a container can be accomplished in two ways:

https://meshery.layer5.io/docs/service-meshes/adapters/maesh
https://github.com/golangci/golangci-lint
https://github.com/layer5io/meshery
https://github.com/layer5io/meshery-consul
https://github.com/layer5io/meshery/blob/master/CONTRIBUTING-gitflow.md
https://docs.google.com/document/d/1FzX-C_xy9hZ3Eu9dcCE0unhFV5LRUrb5YLn_MGYuG6Y/edit
https://docs.google.com/document/d/1FzX-C_xy9hZ3Eu9dcCE0unhFV5LRUrb5YLn_MGYuG6Y/edit
https://docs.google.com/document/d/11nAxYtz2SUusCYZ0JeNRrOLIxkgmmbUVWz63MBZV2oE/edit#heading=h.blih70a9hxp
https://docs.google.com/document/d/11nAxYtz2SUusCYZ0JeNRrOLIxkgmmbUVWz63MBZV2oE/edit#heading=h.blih70a9hxp
https://github.com/layer5io/meshery/blob/master/CONTRIBUTING.md#contributing

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

1.​ Define the adapter’s address in the UI: Unless the running container is named as specified
in the docker-run target in the Makefile, the container has to be removed manually first.
Then, run make docker followed by make docker-run. Then, connect to the adapter in the UI
in “Settings>cloud native infrastructurees” using localhost:<port> if the meshery server is
running as a binary, or <docker IP address>:<port> if it is running as a docker container.

2.​ Using mesheryctl: In ~/.meshery/meshery.yaml, change the tag specifying the image of the
adapter to “latest”. Run make docker, followed by mesheryctl system start --skip-update. This
assumes mesheryctl system start has been executed at least once before.

Running the adapter as a process
Another way to test your local changes is to run the adapter as a process. To do this, clone the
meshery repository, and start meshery using make run-local-cloud. Start the adapter from your IDE,
or by executing make run. Then, in the meshery interface, add the adapter using “localhost:<PORT>”.

Using gRPCurl to interact with the adapter
As the adapter is exposing a gRPC-API, gRPCurl can be used to interact with it. gRPCurl is a
command-line tool that lets you interact with gRPC servers. It's basically curl for gRPC servers. Nic
Jackson explains it really well in this video. If you’re using gRPCurl, you don’t need to start meshery at
all.
Start your adapter, preferably in debug mode, from your favorite IDE. In the following examples, it is
assumed to run on “localhost:10002”. It is also assumed that gRPC reflection is enabled in the
adapter (by importing google.golang.org/grpc/reflection in main.go and registering the server “s”
using reflection.Register(s)). If reflection is not enabled, add -import-path ./meshes/ -proto
meshops.proto to all grpcurl commands, which assumes that “meshops.proto” has been
downloaded using make protoc-setup.

Some examples (--plaintext means no TLS when connecting to server):

Get a list of all services:

grpcurl --plaintext localhost:10002 list

Get a list of all functions in meshes.MeshService

grpcurl --plaintext localhost:10002 list meshes.MeshService

Get all supported operations:
​ grpcurl --plaintext localhost:10002 meshes.MeshService.SupportedOperations

Describe meshes.CreateMeshInstanceRequest and get a message template:

grpcurl -plaintext -msg-template localhost:10002 describe \
meshes.CreateMeshInstanceRequest

yields a message template:​
​ {

https://github.com/fullstorydev/grpcurl
https://github.com/fullstorydev/grpcurl
https://www.youtube.com/watch?v=RHWwMrR8LUs

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

 "k8sConfig": "",
 "contextName": ""
}

k8sConfig takes a base64-encoded k8s configuration, all on one line. This can be achieved using
kubectl config view | base64 -w 0 -. Save the message in a file, e.g. message.json. Then, create a new
k8s-client in the adapter using:

cat message.json | grpcurl --plaintext -d @ \
localhost:10002 meshes.MeshService.CreateMeshInstance

Now, you can use meshes.MeshService.ApplyOperation to apply operations, like deploying a cloud
native infrastructure or a sample application.

Refactor: Common (Adapter) Libraries
●​ See https://github.com/layer5io/meshkit (note: this was renamed from layer5/gokit on

24.10.20)
●​ See https://github.com/layer5io/meshery-adapter-library,

○​ see The meshery-adapter-library (documentation)

The current architecture of adapters is such that they each have some redundancy between them. A
subset of their functionality, functions universal to all adapters, are candidates for centralization into
a shared adapter package. Examples of this redundancy:

1.​ Downloading a cloud native infrastructure release from GitHub and provisioning to
Kubernetes

2.​ Installing a cloud native infrastructure using Helm
3.​ Splitting YAML file (?)
4.​ …

The creation of a central, shared package with common functions, and the subsequent displacement
of those then redundant functions in the existing adapters is something that can be done before or
after the adapters above are created.

Forming the basis of the common adapter library
Should we fork go-kit as the basis of the Layer5’s meshkit? Layer5 needs to customize some of
go-kit’s packages.

If we do fork... If we do not fork...

- Incur sustaining overhead + Avoid sustaining overhead

- Challenging to update from upstream go-kit + Easy to update from upstream go-kit

https://github.com/layer5io/meshkit
https://github.com/layer5io/meshery-adapter-library
https://github.com/go-kit/kit

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

- Learn Layer5’s meshkit as a mandatory for
adapter development

- Learn upstream go-kit as a mandatory for
adapter development

+ Can customize the packages - Cannot customize the packages

- Performance overhead due to wide scoped
packaging

- Issues with versioning, the control is with the
upstream.

Test cases maintained Have to write test cases and coverage for every
feature we implement.

Modified functions behave differently than
expected, this might be quite confusing.

+ Functions behave as expected

Changes are implemented in the fork, not a
clear separation, developers have to go through
change history/diff to figure out what has
changed.

+ Clear separation between go-kit and Layer5
customization

If we think we need to fork because the library
doesn’t support e.g. injection of necessary
custom functionality, then maybe another
library should be considered.

+ Well designed library with clean extension
points.

Tight coupling to go-kit + Loose coupling

See this tweet from one of the go-kit maintainers -

https://twitter.com/basvanbeek/status/1300492605206269953?s=20
https://github.com/go-kit/kit

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

Refactor: Adapter parametrization
Improving our adapter and server design to account for tracking cloud native infrastructure Version
#. This attribute would be sourced within the adapter and displayed in Meshery server.
E.g. using Viper, where the default version is defined in the adapter code, but can be overridden
through command line arguments or environment variables. Depending on a specific mesh, this
could mean several parameters, e.g. for Consul Helm chart version (0.24.1) as well as specific version
of the mesh binary (e.g. 1.8.0, 1.8.1).
Mesh parameterization could be exposed through a new service function MeshInfo, returning some
fixed fields (name etc) and a map for arbitrary data.
Related: SupportedOperations might return a list with supported parameters/flags with default
values, that can be used in ApplyOperation, and the UI.

Refactor: Adapter configuration
Using Viper (https://github.com/spf13/viper) by default.

Security
●​ code security check using gosec (golangci-lint)
●​ container security scanning in CI/CD?
●​ secure RPC traffic
●​ handling kubeconfig
●​ handling secrets

Misc
(don’t really know where to put points mentioned here, move them to appropriate section later)

●​ kubeconfig.kubeconfig with the correct context is sent to the adapter using the
CreateMeshInstance call. Is it also written back to the filesystem?

The structure design for the codebase

General
Circular dependencies between packages should be avoided.

https://github.com/spf13/viper

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

Related presentation(s): Common Libraries

The Adapter code
The code hierarchy is divided into several layers. This is based on domain-driven-design architecture.
➔​ The top most layer is the `Service` layer, which provides the server specific implementations

and configurations.
➔​ The middle layer will be the `Middleware` layer, which holds all the dependencies and

custom integrations to support the application. Middleware is also known as a decorator.
➔​ The bottom most layer is the `Handler` layer, which would have the core business/adapter

logic code implementations.

MeshKit
The code hierarchy is pluggable and independent from one another. There can be N number of
packages depending upon the use case.

●​ `errors/` - holds the implementations and the error handlers and error codes which are
used across projects.

●​ `logger/` - holds the implementations of logging handler and custom attributes to add if any.
●​ `utils/` - holds all the utility functions that are specific to meshery projects and are to be

used generically across all of them.
●​ `tracing/` - holds the implementations of tracing handlers with different tracing providers

like jaeger,newrelic, etc.
Each package inside a meshkit is a handler interface implementation, the implementation could be
from any third-party packages or the go-kit.

How are we tracking adapter version #?
The adapter version is tracked in the Service layer described above. There is an object
corresponding to this layer that holds the adapter version. The value of this version would come
from the config.

layer5/meshkit (L-1 in the figure below) should only contain general utility code that can also be
used in code not (directly) dealing with adapters. If there exists such code or in the future? This
means that layer5/meshkit should maybe not contain k8s etc code and imports, as these are used
exclusively in adapters.

How does the adapter
What goes into the common adapter library and what is cloud native infrastructure specific?
The following would go under adapter library (L-2):

●​ Implementations of the smi tooling library
●​ Streaming handlers
●​ Protocol buffers and client handlers
●​ Deployment implementations like helm, sample applications, etc

https://docs.google.com/presentation/d/1uQU7e_evJ8IMIzlLoBi3jQSRvpKsl_-K1COVGjJVs30/edit#slide=id.g7bc4a4c86c_0_0
https://github.com/go-kit/kit

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

cloud native infrastructure specifics are (L-3):

●​ Deploy and delete operation logics
●​ Configurations, eg: port number, labels,annotations,etc

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

Module Dependencies
TODO: Overview over module dependencies and hierarchy, e.g. similar to the diagram above, or as a
table. This helps to decide where (common) code should be located. Also, it helps to avoid (and
detect) circular dependencies between modules, which has to be avoided.

Errors
The custom error object that has been planned consists of several attributes that makes the error
much informative and yet easier to maintain across projects. See the Messaging System and
Notification Center document.

The meshery-adapter-library
This section contains a high level overview of the meshery-adapter-library, its purpose and
architecture. For details, the reader is referred to the documentation and the code in the repository.

Purpose
The main purpose of the meshery-adapter-library is to

●​ provide a set of interfaces, some with default implementations, to be used and extended by
adapters.

●​ implement common cross cutting concerns like logging, errors, and tracing
●​ provide a mini framework implementing the gRPC server that allows plugging in the mesh

specific configuration and operations implemented in the adapters.
●​ provide middleware extension points

Overview and usage
The library consists of interfaces and default implementations for the main and common
functionality of an adapter. It also provides a mini-framework that runs the gRPC adapter service,
calling the functions of handlers injected by the adapter code. This is represented in an UML-ish
style in the figure below. The library is used in the Consul adapter, and others will follow.

https://docs.google.com/document/d/1_zpEWBcC6ngOLen_E_nc-octiUdBbpmdwwIX6qzo70M/edit#heading=h.lr2rm3i0v0s3
https://docs.google.com/document/d/1_zpEWBcC6ngOLen_E_nc-octiUdBbpmdwwIX6qzo70M/edit#heading=h.lr2rm3i0v0s3

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

Package dependencies hierarchy
A clear picture of dependencies between packages in a module helps avoid circular dependencies
(import cycles), understand where to put code, design coherent packages etc.

Referring to the figure below, the packages config and meshes (which contains the adapter service
proto definition) are at the top of the dependency hierarchy and can be used by any other package.
Thinking in layers (L), config would be in the top layer, L1, adapter in L2, and config/provider in L3.
Packages can always be imported and used in lower layers.

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

​

Generating cloud native infrastructure Pattern
Components

For more context on cloud native infrastructure patterns and their components, see:
 Meshery and Service Mesh Patterns

​
Every adapter should have OAM components for each cloud native infrastructure version specific
resource so that it can register its capabilities with the Meshery server and operations can be
performed using patterns.

Generating and bundling pattern components at buildtime
●​ The CI process of each adapter should generate pattern components as new versions of a

cloud native infrastructure are released and upload them to the adapter repo.
●​ They would then be packed in the adapter’s container image during the build process. This

will ensure that the adapter is ready to use out of the box in an air gapped environment.
●​ Tentatively, this is being done using bash scripts in the CI process. However, in the long term

we’ll be generating components by using adapter’s runtime generation capabilities in CI as
well. This will ensure components have a single source of origin.

https://docs.google.com/document/d/1B2N78EdRiZF-yVo1-HY3syppwBBDumgMuYg6seD-AJ4/edit#heading=h.fzfrj78uj8y4

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

Generating pattern components at runtime

System Flow: cloud native infrastructure Resources
Adapters facilitate generation of pattern components on-demand. Integrated in each adapter are
generic component generation utilities imported from MeshKit.

●​ A user would only specify the appropriate cloud native infrastructure version and then

summon the operation for generating components.
●​ Adapter developers would ideally recognize and specify reliable sources for any of those

manifests in the adapter's code. Meshkit would take care of fetching them.
●​ Also adapter developers would be having options for specifying jsonpath filters to be used

with the json schema utility. If they provide none, default filters based upon observation
from various meshes would be used. Sample jsonpath filter which tends to apply over
multiple cloud native infrastructure CRDs:

○​ $[?(@.kind=="CustomResourceDefinition" &&
@.spec.names.kind=='$t')]..openAPIV3Schema.properties.spec

●​ What all manifests are we fetching and their source:
○​ CRDs: GH repo
a.​ Helm charts:

1.​ Helm repo
2.​ GH repo

b.​ What else?
NOTE: We would also keep GH release bundles as a universal fallback method for the above
resources.

c.​ cloud native infrastructure resources and K8s native resources:
1.​ Fetch the json schema utility on demand
2.​ Provide it cloud native infrastructure CRDs
3.​ Extract OpenAPI schema from those CRDs using appropriate jsonpath filters.
4.​ Extract other metadata for generating OAM workloads using some other jsonpath

filters.

System Flow: Kubernetes Native Resources
Use Case: Extracting metadata for pattern components from Kubernetes
Primary Actor: Meshery Server
Scope: A single Kubernetes cluster
Level: System-wide setting
Story: you can regurgitate the user story here. ashishjaitiwari15112000@gmail.com

Preconditions:

1.​ Meshery has appropriate credentials to a Kubernetes cluster.

mailto:ashishjaitiwari15112000@gmail.com
https://docs.google.com/spreadsheets/d/1rGGpSXC68iDJzNRU-qZIRQsZUwkt1qLFg7JCs4pfvbU/edit#gid=0

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

2.​
Acceptance Tests:

1.​ The following Kubernetes objects are registered as capabilities in Meshery.
2.​ Each capability is associated with the respective Kubernetes context.
3.​ The Kubernetes context has a version # (e.g. v1.22.0); consequently, every registered

capability has an associated version number.
Behaviors:

1.​ Meshery should register duplicative capabilities of same object type and K8s version #
between contexts. Deletion of one context and its registered capabilities should have no
effect on another connected context.

2.​ Meshery Server does not extract cloud native infrastructure pattern components - only
Kubernetes pattern components.

3.​ Upon successful connection to Kubernetes context, but on failure to generate components,
display Warning level event in Meshery UI Notification Center.

a.​ Include probable cause of insufficient service account / cert permissions.
Triggers:

1.​ Initial connection to Kubernetes cluster. Could be on Meshery Server boot or on user upload
of one or more contexts.

2.​ Does not trigger when ad hoc connectivity tests are run.
Basic flow (actor: meshery server):

1.​ Upon initial connection to a Kubernetes context, retrieve K8s objects (json documents) from
kube-api using client-go.

2.​ Use MeshKit function to create schemas and definitions from the json documents.
3.​ Use core.RegisterWorkload function to register these workloads in Meshery Server.
d.​ Native Meshery resource: ?

Adapter Component Support

MESH
MANIF
ESTS

RETRIEVAL
MECHANICS

RUNTIME BUILDTIME MANIFESTS
EARLIEST
VERSION

RANGE OF
VERSIONS

OF
VERSI
ONS

Istio GH
Using Manifests in
meshkit function ✔️ ✔️ ✔️ 1.6.0 1.6.0 - 1.11.4 50

OSM GH
Using helm in meshkit

function ✔️ ✔️ ✔️ 0.9.2 0.9.2 - 0.10.0 3

Kuma GH
Using helm in meshkit

function ✔️ ✔️ ✔️ 1.2.2
1.2.2,

1.3.0-1.3.1 3

Linkerd GH
Using crds from github

repo ✔️ ✔️ ✔️ 2.10.2 2.10.2 - 2.11.0 2

Consul GH
Using crds from github

repo ✔️ ✔️ ✔️ 1.8.4 1.8.4-1.10.0 10

Traefik
Mesh GH

Using helm in meshkit
function ✔️ ✔️ ✔️ ? ? ?

https://raw.githubusercontent.com/istio/istio/master/manifests/charts/base/crds/crd-all.gen.yaml
https://github.com/openservicemesh/osm/tree/main/charts/osm/crds
https://github.com/kumahq/kuma/tree/master/deployments/charts/kuma/crds
https://github.com/hashicorp/consul-helm
https://github.com/traefik/mesh-helm-chart/

Meshery Design Document: Adapters

Status: Draft | Under Review | Approved

App
Mesh GH

Using crds from github
repo ✔️ ✔️ ✔️ 1.4.1 1.4.1 1

NGINX GH
Using helm in meshkit

function ✔️ ✔️ ✔️ 1.2.0 1.2.0-1.2.1 2

Cilium

NSM GH ? ❌ ❌ ✔️ ? ? ?

Citrix ? - - - - - - -

VMware
Tanzu ? - - - - - - -

Octarine N/A - - - - - - -

https://github.com/aws/aws-app-mesh-controller-for-k8s/blob/master/config/helm/appmesh-controller/crds/crds.yaml
https://github.com/nginxinc/nginx-service-mesh
https://github.com/networkservicemesh/networkservicemesh/tree/master/deployments/helm/nsm/charts/config/templates

	
	Meshery Adapters
	Design Prologue
	Guiding Principles for Adapter Design
	Design Goals
	Architecture Diagram

	Adapters
	Repositories
	Design Objectives

	Meshery User Interface
	Design Objectives

	Tests
	Documentation
	Design Objectives

	Continuous Integration
	Development
	Running the adapter as a container
	Running the adapter as a process
	Using gRPCurl to interact with the adapter

	Refactor: Common (Adapter) Libraries
	Forming the basis of the common adapter library

	Refactor: Adapter parametrization
	Refactor: Adapter configuration
	Security
	Misc
	The structure design for the codebase
	General
	The Adapter code
	MeshKit
	Module Dependencies
	Errors
	The meshery-adapter-library
	Purpose
	Overview and usage
	Package dependencies hierarchy

	Generating cloud native infrastructure Pattern Components
	Generating and bundling pattern components at buildtime
	Generating pattern components at runtime
	System Flow: cloud native infrastructure Resources
	System Flow: Kubernetes Native Resources

	Adapter Component Support

