
Molecular Structure

II. Ionic vs. Covalent Compound Structure

III. Electron Distribution

A. Lewis Dot diagram **Homework:** Worksheet 13.1

IV. Electron Pair Repulsion

A. Shared vs. Unshared Pairs Homework: Worksheet 13.2

C. Strength of Repulsions

D. Important Examples

V. Multiple Bond Repulsions Homework: Worksheet 13.3

A. double bonds

B. triple bonds

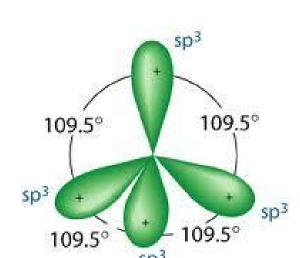
C. Saturated vs. Unsaturated **Homework:** Worksheet 13.4

VI. Hybrids Homework: Worksheet 13.5

A. sp^3 , sp^2 , sp

B. examples

VII. Resonance Homework: Worksheet 13.6


A. Delocalized

B. Conjugated

LAB ACTIVITY 13-1

VIII. Chapter Review Sheets

IX. TEST Chapter 13

Chapter 13: Molecular Structure

Objectives:

- a) use models to explain the structure of a given molecule
- b) describe hybrid orbitals and use hybridization theory to explain the bond angles in compounds
- c) differentiate between sigma and pi bonding

I.

I.	Electron Distribution					
	Electron Dot Diagram Arrange the outer electrons at dots around the atoms so that each ends up with a					
b) For all atoms that form covalent bonds, except hydrogen, represents a full outer level. c) Rules for drawing electron dot structures:						
	1.					
	2.					
	3.					
	4.					
	5.					
	Examples:					
	$\mathrm{H_{2}O}$					
	AsI_3					
	H_2 Te					
	PF_3					
	CBr_4					

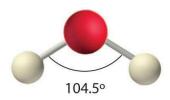
a)	Shared Pairs vs. Unshared Pairs
	Shared Pairs →
	Unshared Pairs →
Ho	w many unshared pairs are on the central atom in each of the examples on the previous

How many unshared pairs are **on the central atom** in each of the examples on the previous page?

	$\mathrm{H_{2}O}$	AsI ₃	H ₂ Te	PF ₃	NI ₃	CBr ₄
Unshared Pairs						
Shared Pairs						

II. Valence Shell Electron Pair Repulsion (VSEPR Theory)

a)	Electron pairs spread as far apart as possible to	_•
b)	The numbers and types of repulsions determine the	_
	avamnla: DaE	
	example: BeF ₂	

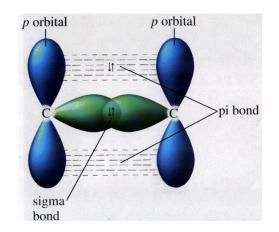

example: BF₃

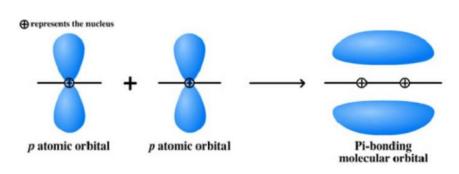
c) Tetrahedron: BASE STRUCTURE

example: CH₄

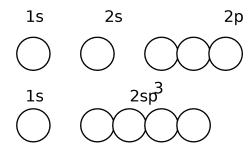
Replace one shared pair with an unshared pair:

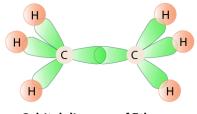
Replace another shared pair with an unshared pair:


d)	Bonds and unshared pairs a	ffect the	
e)	Unshared pairs have a		than a shared pair.
	Unshared pair is acte	d upon by only	·
	Shared pair is acted u	ipon by	·
f)	Repulsions vary:		
	unshared-unshared	unshared-shared	shared-shared
g)	Three <u>VERY</u> Important Exa	amples:	
	1) methane = CH_4		
	•	around the central atom are sh	nared therefore
		(bond angles	 all)


→ unshared-shared i	repulsions shared-shared rep	oulsions
→ unshared pair		(
→		
3) water = H_2O		
→	noire and	naire
	pairs and;	
	repel each other the most making th	
- 2 diisiidi ed pairs i		_
_	(o)	
	(
→		
→		
→		·

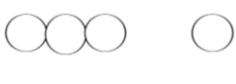
2) ammonia = NH_3


1)	Shares	pairs of electron	ons between 2 at	oms			
2)		·					
		or					
	For Example:	CH ₂ O		CO ₂			
1)		of elec		o atoms.			
4)	Always give a _		shape).			
	For Example:	C_2H_2		N_2			
Satur	r ated - When a mo	olecule contains a l	II		bonds.		
		molecule has at le				_bond.	
For E	xample:						
	a and Pi Bonds) formed when t	s orbitals	s orbital	→	s-s overla	
1)	_ ,) - formed when to	p orb.	ital porbital		p-p overlaj	
		t	o form a	X • X •	→ 0		
	covalent bond. S	ingle bonds are					


- 2) Pi Bonds (π) when two p orbitals bend _____ (_____)
 - i. the _____ in a double bond is a π bond.
 - ii. the ______in a triple bond are π bonds.
 - iii. they are _____ and can be _____ than sigma bonds.

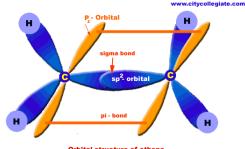
- 3) A double bond is composed of one ______ bond and one _____ bond.
- 4) A triple bond is composed of one ______ bond and two _____ bonds.
- IV. <u>Hybrid Orbital Theory</u>: Another way of determining molecular geometry.
 - → This model considers the different ways which _____ when sharing electrons.
 - → This model is best illustrated by looking at ______.
 - a) sp³ Hybrid:

 \equiv


Orbital diagram of Ethane

These four equivalent orbitals are helpful in understanding the tetrahedral arrangement for four bonds on a central atom. Ex. CH₄

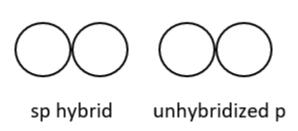
Example: Ethane C₂H₆

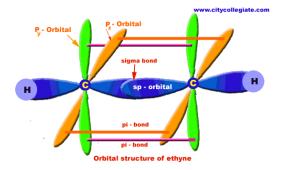

A carbon atom can form $___$ equivalent bonds by covalent linkage \rightarrow many, many possibilities for compounds.

b) $\mathbf{sp^2}$ Hybrid \rightarrow a combination of one s and two p orbitals, one p orbital is left unhybridized

 sp^2

unhybridized p

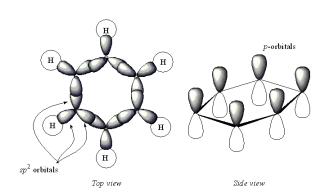



sp² is also a hybrid orbital. It is a hybrid of one s + two p \square hybrid orbitals $s + p + p \square$

Ex. C_2H_4

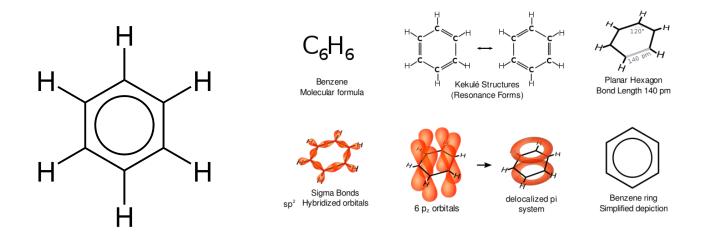
c) **sp Hybrid** → combination of ______ orbitals; two p orbitals are left unhybridized.

one
$$s + one p = ____ hybrid orbitals$$


Example: C₂H₂

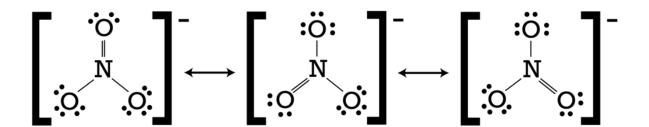
d) How to determine what type of hybridization a molecule has:

bonds + # Unshared pairs = # electron clouds


# electron clouds on central atom	hybridization type
2	sp
3	sp^2
4	sp^3

V. BENZENE: $C_6H_6 \rightarrow$ ______ ring C

C hybridizes to sp²


- 6 σ bonds between____
- 6 σ bonds between
- 3 π bonds between____
- a) <u>Delocalized π electrons</u> \rightarrow the 6 electrons in the p orbitals of benzene are _____, above and below the plane of the molecule.

- b) <u>Conjugated System</u>: whenever _______, a special stability is gained.

Example: Benzene

Example: Nitrate Ion NO₃-1

- → Experimental evidence suggests that all bond lengths are ______.
- → Need ______to describe this.
- → Be sure to include _______, ________, and _______ in your resonance structures.

Try This one: Carbonate Ion