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Abstract - A model and simulation channel need to be built on understanding better and testing

the network protocol and application behavior. In this project, a two-state Markov based on
Gilbert’s algorithm model can build a model based on the stationarity assumption of data and a
discrete-time Markov chain (DTMC) that factors in the non-stationarity of a wireless network
trace in a short period. These Markov Models are used to investigate and develop the statistical
characteristics of the underlying wireless network performance, like throughput, packet loss, and

latency, to understand the behavior of wireless data transmissions better.

Introduction

Understanding the network protocol and application behavior requires accurate techniques which
model and simulate network channels; such techniques play a vital role in understanding and
behavior of the Network. Every day, network protocol and design are being changed. Also, the
designing of communication protocols rises in involvement. [2] To estimate Network's
performance, we should be aware of the techniques such as simulation, analysis of actual data,
and analysis of other models. Due to the better understanding of network behavior and structure
of communication protocol to modeling network, we need to look at the error behavior at the
Link and upper layers. A deep understanding of packet failure techniques and error burstiness is

essential for designing and monitoring error control protocols. [3]



In our everyday life, we use applications that stream audio and video. Those applications will
work better when they benefit from a better underrating of network behavior. For example, in the
call application, we can benefit from the call quality without having latency, glitter, and lags via
estimations of conditions in real-time ways and networks. [5] The current network model
approach to the error modeling- Gilbert model does not entirely fit the current network wireless
network due to the requirement of stationary traces over a short period. And the nature of the
wireless network due to multipath fading or shadowing causes the trace to be non-stationary.
This can cause the traditional stochastic analysis of wireless traces is likely to be less accurate
than the required accuracy for use in real life. And the use of an inaccurate analytical model
resulted in inferior error control protocol parameter choices. Thus, a new algorithm must be

presented to improve the model.

Related works

There is significant interest in using network measurements to model network behavior.
However, very few researchers address the problem of non-stationarity in network modeling.
Zhang and others study stationarity on the Internet and introduce a new notion of stationarity that
is more relevant to network properties [16]. They call a dataset operationally stationary if the
statistics of interest remain within bounds considered operationally equivalent. Their most
exciting finding is that stationarity depends on the time scale used for evaluation. Others have
looked at the stationarity behavior of network traffic, traffic stationarity. For example, Molnar
and Gefferth [11] propose a simple approach for identifying stationary intervals and analyzing
them independently. They introduce a new technique for identifying these intervals. Leland et al.

[8] study the stationarity of self-similar models of network traffic.



Researchers have applied traditional models to analyze non-stationary data collected in computer
networks. In particular, they have used traditional models to characterize the loss process of
various channels. Bolot et al. [3] use a characterization of the loss process of audio packets to
determine the appropriate error control scheme for streaming audio. They model the loss process
as a two-state Markov chain and show that the loss burst distribution is approximately geometric.
Yajnik et al. [15] characterize the packet loss in a multicast network by examining the

spatial (across receivers) and temporal (across consecutive packets) correlation in packet loss.
Their modeling of temporal loss using a 3rd-order Markov chain is of particular interest. Yajnik’s
work identifies the problem of non-stationarity in their datasets, and they analyze the data by
removing these parts of the data that experience nonstationary error behavior. There is also
related work in wireless traffic modeling. Nguyen et al. [12] present a two-state Markov wireless
error model (i.e., Gilbert model) and develop an improved model based on collected Lucent 900
MHzWaveLAN error traces. Building on this work, Balakrishnan and Katz [1] also contained
error traces from a Lucent 900 MHzWaveLAN network and developed a two-state Markov chain
error model. Willig et al. [14] present a special class of Markov models called bipartite. Zorzi
and Rao [17] also investigate the error characteristics of a wireless channel and compare an
Independent and Identically Distributed (IID) model to the Gilbert model. Their work postulates

that higher-order models are not necessary.

System Model and Simulation

The following data were considered for the Simulation Environment.

e modulation scheme: QPSK, BPSK, 16QAM, and 64QAM
e Signal Noise Ratio (SNR) From 15db to 30db

e Distance between transmitter and receiver over 10 meters



e bandwidth channel considered between 20MHZ to 40MHZ
e Traffic parameters: packet size 1000bytes, Data rate Kbps 100000

all simulations were carried out in MATLAB.

Network performance considered

Latency: Network latency is the delay in network communication. It shows the time that data
takes to transfer across the network. Networks with a longer delay or lag have high latency, while

those with fast response times have low latency. [6]

Throughput: network throughput is the amount of data moved successfully from one place to

another in a given period. Network throughput is typically measured in bits per second (bps)

Packet Loss: Packet loss describes lost packets of data not reaching their destination after being
transmitted across a network. Packet loss occurs when network congestion, hardware issues,

software bugs, and several other factors cause dropped packets during data transmission.

simulation result

NODE ID LATENCY(BSPK) | LATENCY(QPSK)
| 4 4.9
2 3.15 4.4
3 3 4
4 2.64 3.5
5

6

2.32 2.9
2.1 2.45




Table 1: compares results between BSPK and QPSK for Latency

DOWNLOAD | THROUGHPUT | THROUGHPUT
STATIONS (64QAM) (16QAM)
| 23.3 204
2 36.50 32.0
6 47.0 43.2
8 60.1 57.6
9 69.2 63.3
15 111.3 105.7
20 150.6 137.7
25 188.3 168.2
30 221.15 197.1
40 288.4 250.0
50 360.3 304.4
60 423 346.1
74 498 403.2
100 509.14 414.4
140 509.19 414.56

Table 2: compares results between 64QAM and 16QAM for throughput




NODE ID PACKET PACKET
LOSS(BSPK) LOSS(QPSK)

| 0.2 0.198

2 0.18 0.175

3 0.15 0.171

4 0.143 0.139

5 0.13 0.12

6 0.11 0.09

Table3: compares results between BSPK and QPSK for Packet loss
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Figurel: compares results between BSPK and QPSK for Latency
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Figure2: compares results between 64QAM and 16QAM for throughput
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Figure3: compares results between BSPK and QPSK for Packet loss



Theoretical Background of the proposed Markov model (Gilbert)

In this model, there are two states: good states and bad states. The mean statistical value for the
data set is calculated, and it is assumed to be in the good state; if the value of the data set is equal
to or higher than the calculated mean value, it is considered to be in the bad state if the value is
lower than the mean. The following set represents the state: S = {G B}. the set of the transition

matrix is expressed by
S = [Sts Str1s Sev2 -0 5 Sk

At the initial state, the channel might be in a good state or a bad state. At the transition of a new

state for a new bit, it will change to a new state or remain in the same state.
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Figure 4

Transition Matrix



A =[ng Pgb
O~ |Pbg Pbb

The four transition probabilities are as follows:

Pea() = Pr{S.,; = g|St = g}
Pgb(1) = Pr{Si+1 = b|St = g}
Pup (1) = Pr{S,.; = b|St = b}
Ppe (1) = Pr{S..; = g|St = b}

We define i as the state probability distribution at time t.

[l = [nt.gfft.b],

Where is the steady-state vector that expresses the total percentage of a state in a Markov chain,

this vector can be computed by raising P to immense power.

Two-State Markov Model

From the transition diagram in fig4 above, P, represents moving from a good state and
remaining in a good state, P, represents moving from a good state to a bad state, and Py,
represents moving from a bad state and staying in a bad state. P, represents moving from a bad
state to a good state.

For modeling, the state was classified as good or bad by computing the mean of the result
obtained to determine a threshold. For throughput, the result obtained, any data below the

threshold were regarded as being in a bad state, and data above or equal to the threshold was



classified as in a good state. for latency, the threshold was determined by computing the mean.
Any data below the threshold were classified as a good state, and any data above the threshold
were classified to be in a bad state; for packet loss ratio, any data below the threshold was
considered to be in a good state, and any data above the threshold were classified to be in a bad
state.

To statistically evaluate the performance measure of the wireless network, the system’s state at
the equilibrium or steady state needs to be computed. Below is the performance measure at

steady state.
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Transition Matrix for Latency
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Discrete-Time of Markov model

the second Markov model that factors in the non-stationarity of a wireless network trace. process
{Xn | n 0} that takes values in a discrete space E A DTMC is defined by its memory and its

transition probabilities and is characterized as follows:



Pr(Xn-H :] | XO :iOeXI = ila "'1XH :ln)

— Pr(Xn-i-l :] l Xn—:—I—la 1<z K)s [10]

K defines the memory of the DTMC. To calculate the DTMC’s memory, conditional entropy is
needed to find the order of the Markov Chain. Given the prior history, conditional entropy can
indicate the randomness of the next piece in a trace. And the conditional entropy is calculated by
the following formula. [2]

£(X) E(y, x) E(y,X)

- ] —

H() = — -
(7) £

T e
5 samples vel0.1)

[9]

Stationarity

The DTMC algorithm provides lossy and error-free states and parameterized transitions between
them as a function of a fixed parameter called the change-of-state constant C. The
change-of-state constant C is the mean plus one standard deviation of a trace’s length of error
bursts. The value of C determines the threshold for computation. The next step was to remove
trace sections consisting of error-free bursts of length equal to or greater than C. doing that, to

ensure the processed result will have stationarity error statistic properties. [1]

Once the lossy sub-trace has been generated and confirmed as a stationary process, the next step
was to model the lossy sub-trace as a DTMC with memory k. The memory k can impact the
complexity of the model, and determining the right k can ensure the model has the right level of
complexity while not having a significant impact on the accuracy (where k is the entropy order).
[11] And lower entropy means the model will be more accurate. In the previous gilbert model, I

used the order K as one, so the entropy is the highest, and accuracy is the lowest.



The application of the DTMC algorithm to input trace can be summarized as follows.

Calculate the mean (me) and standard deviation (sde) values for error burst lengths in the trace.
2. Set C, the change-of-state constant, equal to (me + sde).

3. Partition the trace into lossy state and error-free state portions using the following definitions:
» Lossy state: runs of 1’s and 0’s, with the first element being a 1, and runs of 0’s that have
lengths less than or equal to the C.» Error-free state: runs of 0’s that have lengths greater than C.
4. Create a lossy subtrace from the lossy state portions of the error trace.

5. Model lossy subtrace as a DTMC and calculate its order

and transition probabilities. Determine the best-fitting distributions of the length

SCI"I‘U]"(;; ] i:)
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[17]

The standard error was calculated for Bn=0.013 and Gn=0.025. The smaller normal error value

means a more accurate prediction.



DTMC VS GILBERT APPROACH
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CONCLUSION

This paper uses two Markov-based models to build a network modeling approach to error
modeling. The traditional two-state Gilbert model was helpful for the traditional network, with
error statistics remaining relatively constant over a short period. At a steady state, we could
statically compute various wireless performance measures like throughput, latency, and packet
error ratio at the transmitter and receiver. But due to the increased use of the wireless network,

the error statistics in the network environment are no longer stationary. Therefore, we must clean



the data and create a stationary process from a non-stationary dataset. Once the data have been
convincing to the stationary process, we need to find the right order of the Markov chain to
analyze the model. as the randomness of the wireless network increases, as seen in fig 5, the

gilbert model was not as accurate in comparison to the DTMC model approach.
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