
Ingredient related features for 3rd party apps
THIS IS A DRAFT

Ingredient related features for 3rd party apps
Introduction
Incomplete products
POST Photos - Uploading

Uploading Photos
Read the following before uploading photos:

POST Photo Requests
Image Upload
Parameters

Selecting and Cropping Photos
Parameters
Test server
Process
OCR with Google Cloud Vision
Parameters

WRITE Scenario - Adding New products

Structure of the Call
Authentication and Header
Subdomain
Product Barcode
Credentials
Parameters
Adding a Comment to your WRITE request.

Introduction
● If you can't get the information on a specific product, you can get your user to send

photos and data, that will then be processed by Open Food Facts AI and contributors
to get the computed result you want to show them.

● You can implement the complete flow so that they get immediately the result with
some effort on their side.

● That will ensure user satisfaction
● Most of the operations described below are implemented in the openfoodfacts-dart

plugin, but as individual operations, not as a coherent pipe

Dart/Flutter package
● Get the status of the product

○ https://openfoodfacts.github.io/openfoodfacts-dart/utils_ImageHelper/ImageH
elper-class.html

○ https://openfoodfacts.github.io/openfoodfacts-dart/model_ProductImage/Imag
eField-class.html

● Upload ingredient photo
○

● Get OCR of the photo
○ https://openfoodfacts.github.io/openfoodfacts-dart/model_OcrIngredientsResu

lt/OcrIngredientsResult-class.html
○ https://openfoodfacts.github.io/openfoodfacts-dart/utils_OcrField/OcrField-cla

ss.html
○ https://openfoodfacts.github.io/openfoodfacts-dart/utils_OcrField/OcrFieldExte

nsion.html
● Send the ingredients
● Refresh product

Incomplete products
if (

status= category-to-be-completed &&

status = ingredients-to-be-completed

)

https://openfoodfacts.github.io/openfoodfacts-dart/utils_ImageHelper/ImageHelper-class.html
https://openfoodfacts.github.io/openfoodfacts-dart/utils_ImageHelper/ImageHelper-class.html
https://openfoodfacts.github.io/openfoodfacts-dart/model_ProductImage/ImageField-class.html
https://openfoodfacts.github.io/openfoodfacts-dart/model_ProductImage/ImageField-class.html
https://openfoodfacts.github.io/openfoodfacts-dart/model_OcrIngredientsResult/OcrIngredientsResult-class.html
https://openfoodfacts.github.io/openfoodfacts-dart/model_OcrIngredientsResult/OcrIngredientsResult-class.html
https://openfoodfacts.github.io/openfoodfacts-dart/utils_OcrField/OcrField-class.html
https://openfoodfacts.github.io/openfoodfacts-dart/utils_OcrField/OcrField-class.html
https://openfoodfacts.github.io/openfoodfacts-dart/utils_OcrField/OcrFieldExtension.html
https://openfoodfacts.github.io/openfoodfacts-dart/utils_OcrField/OcrFieldExtension.html

then "Add ingredients and a category to see the level of food processing

and potential additives"

if (

status= category-to-be-completed

)

then "Add a category to see the level of food processing and potential

additives"

if (

status = ingredients-to-be-completed

)

then "Add ingredients to see the level of food processing and potential

additives"

POST Photos - Uploading
https://us.openfoodfacts.org/cgi/product_jqm2.pl?code=0074570036004&imgupload_front=cheeriosfrontphoto.jp
g

Uploading Photos

Photos are source and proof of data. Read this topic to learn how to make calls to upload them to
the database.

When you upload an image to Open Food Facts, the image is stored as is.

The first photo uploaded is autoselected as "front" photo.

Read the following before uploading photos:

https://us.openfoodfacts.org/cgi/product_jqm2.pl?code=0074570036004&imgupload_front=cheeriosfrontphoto.jpg
https://us.openfoodfacts.org/cgi/product_jqm2.pl?code=0074570036004&imgupload_front=cheeriosfrontphoto.jpg

● Image Quality: Uploading quality photos of a product, its ingredients and nutrition table
is very important, since it allows the Open Food Facts OCR system to retrieve important
data to analyze the product. The minimal allowed size for photos is 640 x 160 px.

● Upload Behavior: In case you upload more than one photo of the front, the ingredients
and the nutrition facts, beware that only the first photo of each category will be displayed.
(You might want to take additional images of labels, recycling instructions, and so on). All
photos will be saved.

● Label Languages: Multilingual products have several photos based on languages
present on the packaging. You can specify the language by adding a lang code suffix to
the request.

POST Photo Requests

The API requests to upload photos is very straightforward.

POST https://us.openfoodfacts.org/cgi/product_image_upload.pl

Image Upload
Then, add the parameter imagefield to the call and specify from which perspective the photo was
taken:

POST
https://us.openfoodfacts.org/cgi/product_jqm2.pl?code=0074570036004&product_image_upload.pl/imguplo
ad_front=cheeriosfrontphoto.jpg

Parameters
● code: the barcode of the product
● imagefield: (can be either: front | ingredients | nutrition | packaging) + '_' and a 2 letter

language code. (e.g "front_en" for the front of the product in English, "ingredients_fr"
for the list of ingredients in French)

● imgupload_front_fr : your image file if imagefield=front_fr

PARAMS

code

0074570036004

imgupload_front

cheeriosfrontphoto.jpg

Example Request
Photos - Uploading

curl --location --request POST

'https://us.openfoodfacts.org/cgi/product_jqm2.pl?code=0074570036004&imgup

load_front=cheeriosfrontphoto.jpg'

POSTPhotos - Selecting, Cropping, Rotating

https://world.openfoodfacts.org/cgi/product_image_crop.pl?code=3266110700910&id=nutrition_fr&imgid=1&angl
e=90
This topic contains the following information:

● Selecting and Cropping Photos
○ Parameters
○ Test server

●
● Rotating Photos

○ Parameters
●
● Deselecting Photos

Selecting, cropping and rotating photos are non-destructive actions. That means, the original
version of the image uploaded to the system is kept as is. The subsequent changes made to the
image are also stored as versions of the original image.

The actions described in this topic do not modify the image, but provide metadata on how to use
it (the data of the corners in the case of selection and the data of the rotation). That is, you send
an image to the API, provide an id, you define, for example, the cropping and rotation parameters
and as a response, the server generates a new image as requested and you can call this new
version of the image.

Selecting and Cropping Photos

Note: Cropping is only relevant for editing existing products. You cannot crop an image the first
time you upload it to the system.

Parameters
To select and crop photos, you need to define:

● a barcode
● an incremental id (Similar to a version)
● Cropping parameters (x1, y1, x2, y2). These coordinates define a rectangle in the image

and the area that should be kept. Example: 0,0,200,200 px.
● (optional) additional operations:

○ angle= Angle of the rotation
●

Example:

POST
https://world.openfoodfacts.org/cgi/product_image_crop.pl?code=3266110700910&id=nutrition_fr&imgid=1
&angle=90

Test server

https://documenter.getpostman.com/view/8470508/SVtN3Wzy?version=latest#selecting-and-cropping-photos
https://documenter.getpostman.com/view/8470508/SVtN3Wzy?version=latest#parameters
https://documenter.getpostman.com/view/8470508/SVtN3Wzy?version=latest#test-server
https://documenter.getpostman.com/view/8470508/SVtN3Wzy?version=latest#rotating-photos
https://documenter.getpostman.com/view/8470508/SVtN3Wzy?version=latest#parameters-1
https://documenter.getpostman.com/view/8470508/SVtN3Wzy?version=latest#deselecting-photos

https://world.openfoodfacts.net/cgi/product_image_crop.org

POSTPhotos - Performing OCR

https://world.openfoodfacts.net/cgi/ingredients.pl?code=13333560&id=ingredients_en&process_image=1&ocr_en
gine=tesseract
This topic contains the following information:

● Process
● OCR with Google Cloud Vision
● Parameters

Open Food Facts uses optical character recognition (OCR) to retrieve nutritional data and other
information from the product labels.

Process
1. Capture the barcode of the product where you want to perform the OCR.
2. The Product Opener server software opens the image (process_image=1)
3. Product Opener returns a JSON response. Processing is done using Tesseract or Google

Cloud Vision (recommended). The result is often cripped with errors with Tesseract, less
with Google Cloud Vision.

Notes:

● The OCR may contain errors. Encourage your users to correct the output using the
ingredients WRITE API.

● You can also use your own OCR, especially if to plan to send a high number of queries.

OCR with Google Cloud Vision
We recommend Google's Vision API to detect and extract text from the images. For more
information about this product, see: https://cloud.google.com/vision/docs/ocr?hl=en

Parameters
● Test server: https://world.openfoodfacts.org/cgi/ingredients.pl
● code=code
● id=imagefield
● process_image=1

WRITE Scenario - Adding New products

Meet Dave. He is a developer and an active Open Food Facts contributor that regularly adds
new products to the database and completes missing information via API calls. He has described
the process below to show other developers how easy it is to contribute.

https://world.openfoodfacts.net/cgi/product_image_crop.org
https://documenter.getpostman.com/view/8470508/SVtN3Wzy?version=latest#process
https://documenter.getpostman.com/view/8470508/SVtN3Wzy?version=latest#ocr-with-google-cloud-vision
https://documenter.getpostman.com/view/8470508/SVtN3Wzy?version=latest#parameters
https://cloud.google.com/vision/docs/ocr?hl=en
https://world.openfoodfacts.org/cgi/ingredients.pl

Structure of the Call

Authentication and Header
If you have an app that makes POST calls and you don't want your users to authenticate in Open
Food Facts, you can create a global account. Dave has created a global account for the app he
is developing with the following credentials:

● user_id: myappname
● password: 123456

Subdomain
Dave wants to define the subdomain for the query as us. The subdomain automatically defines
the country code (cc) and language of the interface (lc).

The country code determines that only the products sold in the US are displayed. The language
of the interface for the country code US is English.

In this case:

https://us.openfoodfacts.org/cgi/product_jqm2.pl?

Product Barcode
After the version number, the word code, followed by its barcode must be added:

POST https://us.openfoodfacts.org/cgi/product_jqm2.pl?code=0074570036004

Credentials
Dave adds his user credentials to the call as follows:

POST
https://us.openfoodfacts.org/cgi/product_jqm2.pl?code=0074570036004&user_id=myappname&pass
word=******

Add & to concatenate the parameters.

Parameters

https://us.openfoodfacts.org/cgi/product_jqm2.pl?%E2%80%8B%E2%80%8B%E2%80%8B%E2%80%8B%E2%80%8B%E2%80%8B%E2%80%8B

You can define one or more parameters to add, for example, the brand and the Kosher label:

● brands: Häagen-Dazs
● labels: kosher

The call looks like this:

POST
https://us.openfoodfacts.org/cgi/product_jqm2.pl?code=0074570036004&user_id=myappname&password=
******&brands=Häagen-Dazs&labels=kosher

Adding a Comment to your WRITE request.
Use the comment parameter to add the id of the user editing the product. The id should not
contain any personal data.

Important! The user id is not the identifier of an Open Food facts user, but the id generated by
your system.

It should be structured as: user-agent + user-id.

Example

comment=Edit by a Healthy Choices 1.2 iOS user -
SxGFRZkFwdytsK2NYaDg4MzRVenNvUEI4LzU2a2JWK05LZkFRSWc9PQ

