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Natural Language Processing (NLP) is a subfield of Artificial Intelligence (AI) and 
Linguistics that enables machines to understand, interpret, and generate human languages. It 
bridges the gap between human communication and computer understanding.  

Example:  

•  Voice assistants like Alexa, Siri, and Google Assistant.  

•  Machine translation systems (Google Translate).  

•  Chatbots and question-answering systems.  

2. Importance of NLP  

•  Enables human-computer interaction in natural languages.  

•  Automates text processing tasks (translation, summarization, sentiment analysis).  

•  Useful in healthcare, finance, education, law, and customer service.  

•  Drives data-driven decision-making by extracting knowledge from large text datasets.  

3. Core Components of NLP  

1.  Syntax (Structure of Language):  

o  Parsing, POS tagging, grammar analysis.  

o  Example: "The cat sat on the mat" → identifies subject, verb, object.  

2.  Semantics (Meaning of Language):  

o  Word sense disambiguation, semantic roles, logical forms.  

o  Example: “Bank” (riverbank vs. financial bank).  

3.  Pragmatics (Context of Language): 

o  Considers context, intent, and world knowledge.  

o  Example: “Can you open the window?” is a request, not a question about ability.  

4. Common NLP Tasks  

•  Tokenization: Splitting text into words/sentences.  

•  Stopword Removal: Filtering common words like “is, the, a.”  

•  Stemming & Lemmatization: Reducing words to base form (running → run).  

•  Named Entity Recognition (NER): Identifying entities (e.g., names, places).  
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•  Sentiment Analysis: Detecting opinions and emotions.  

•  Machine Translation: Translating text from one language to another.  

•  Speech Processing: Converting speech to text and vice versa.  

5. Challenges in NLP  

•  Ambiguity: Words and sentences may have multiple meanings.  

•  Resource Scarcity: Low-resource languages lack sufficient corpora.  

•  Context Understanding: Computers struggle with sarcasm, irony, and metaphors.  

•  Multilinguality: Handling multiple languages and dialects.  

6. Applications of NLP  

•  Search Engines (Google, Bing).  

•  Virtual Assistants (Siri, Alexa).  

•  Healthcare (clinical text analysis, medical chatbots).  

•  Social Media Analytics (sentiment detection, trend analysis).  

•  Education (automated essay grading, language learning apps). 
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Origins (Brief History of NLP) 

Historically, speech and language processing has been treated very differently in computer 
science, electrical engineering, linguistics, and psychology/cognitive science. Because of this 
diversity, speech and language processing encompasses a number of different but overlapping 
fields in these different departments: computational linguistics in linguistics, natural 
language processing in computer science, speech recognition in electrical engineering, 
computational psycholinguistics in psychology.  

Foundational Insights: 1940s and 1950s 

The earliest roots of the field date to the intellectually fertile period just after World War II 
that gave rise to the computer itself. This period from the 1940s through the end of the 1950s 
saw intense work on two foundational paradigms: the automaton and probabilistic or 
information-theoreticmodels. The automaton arose in the 1950s out of Turing’s (1936) 
model of algorithmic computation, considered by many to be the foundation of modern 
computer science. 
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Turing’s work led first to the McCulloch-Pitts neuron (McCulloch and Pitts, 1943), a 
simplified model of the neuron as a kind of computing element that could be described in 
terms of propositional logic, and then to the work of Kleene (1951) and (1956) on finite 
automata and regular expressions. Shannon (1948) applied probabilistic models of discrete 
Markov processes to automata for language. Drawing the idea of a finitestate Markov process 
from Shannon’s work, Chomsky (1956) first considered finitestate machines as a way to 
characterize a grammar, and defined a finite-state language as a language generated by a 
finite-state grammar. These early models led to the field of formal language theory, which 
used algebra and set theory to define formal languages as sequences of symbols. This 
includes the context-free grammar, first defined by Chomsky (1956) for natural languages but 
independently discovered by Backus (1959) and Naur et al. (1960) in their descriptions of the 
ALGOL programming language. The second foundational insight of this period was the 
development of probabilistic algorithms for speech and language processing, which dates to 
Shannon’s other contribution: the metaphor of the noisy channel and decoding for the 
transmission of language through media like communication channels and speech acoustics. 
Shannon also borrowed the concept of entropy from thermodynamics as a way of measuring 
the information capacity of a channel, or the information content of a language, and 
performed the first measure of the entropy of English using probabilistic techniques. 

It was also during this early period that the sound spectrograph was developed (Koenig et al., 
1946), and foundational research was done in instrumental phonetics that laid the 
groundwork for later work in speech recognition. This led to the first machine speech 
recognizers in the early 1950s. In 1952, researchers at Bell Labs built a statistical system that 
could recognize any of the 10 digits from a single speaker (Davis et al., 1952). The system 
had 10 speaker-dependent stored patterns roughly representing the first two vowel formants 
in the digits. They achieved 97–99%accuracy by choosing the pattern which had the highest 
relative correlation coefficient with the input. 

The Two Camps: 1957–1970 

By the end of the 1950s and the early 1960s, speech and language processing had split very 
cleanly into two paradigms: symbolic and stochastic. The symbolic paradigm took off from 
two lines of research. The first was the work of Chomsky and others on formal language 
theory and generative syntax throughout the late 1950s and early to mid 1960s, and the work 
of many linguistics and computer scientists on parsing algorithms, initially top-down and 
bottom-up and then via dynamic programming. One of the earliest complete parsing systems 
was Zelig Harris’s Transformations and Discourse Analysis Project (TDAP), which was 
implemented between June 1958 and July 1959 at the University of Pennsylvania (Harris, 
1962).2 The second line of research was the new field of artificial intelligence. In the summer 
of 1956 John McCarthy, Marvin Minsky, Claude Shannon, and Nathaniel Rochester brought 
together a group of researchers for a two-month workshop on what they decided to call 
artificial intelligence (AI). Although AI always included a minority of researchers focusing 
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on stochastic and statistical algorithms (include probabilistic models and neural nets), the 
major focus of the new field was the work on reasoning and logic typified by Newell and 
Simon’s work on the Logic Theorist and the General Problem Solver. At this point early 
natural language understanding systems were built, These were simple systems that worked 
in single domains mainly by a combination of pattern matching and keyword search with 
simple heuristics for reasoning and question-answering. By the late 1960s more formal 
logical systems were developed. The stochastic paradigm took hold mainly in departments of 
statistics and of electrical engineering. By the late 1950s the Bayesian method was beginning 
to be applied to the problem of optical character recognition. Bledsoe and Browning (1959) 
built a Bayesian system for text-recognition that used a large dictionary and computed the 
likelihood of each observed letter sequence given each word in the dictionary by multiplying 
the likelihoods for each letter. Mosteller andWallace (1964) applied Bayesian methods to the 
problem of authorship attribution on The Federalist papers. The 1960s also saw the rise of the 
first serious testable psychological models of human language processing based on 
transformational grammar, as well as the first on-line corpora: the Brown corpus of American 
English, a 1 million word collection of samples from 500 written texts from different genres 
(newspaper, novels, non-fiction, academic, etc.), which was assembled at Brown University 
in 1963–64 (Kuˇcera and Francis, 1967; Francis, 1979; Francis and Kuˇcera, 1982), and 
William S. Y. Wang’s 1967 DOC (Dictionary on Computer), an on-line Chinese dialect 
dictionary. 

Four Paradigms: 1970–1983 

The next period saw an explosion in research in speech and language processing and the 
development of a number of research paradigms that still dominate the field. The stochastic 
paradigm played a huge role in the development of speech recognition algorithms in this 
period, particularly the use of the Hidden Markov Model and the metaphors of the noisy 
channel and decoding, developed independently by Jelinek, Bahl, Mercer, and colleagues at 
IBM’s Thomas J. Watson Research Center, and by Baker at Carnegie Mellon University, who 
was influenced by the work of Baum and colleagues at the Institute for Defense Analyses in 
Princeton. AT&T’s Bell Laboratories was also a center for work on speech recognition and 
synthesis; see Rabiner and Juang (1993) for descriptions of the wide range of this work. The 
logic-based paradigm was begun by the work of Colmerauer and his colleagues on 
Q-systems and metamorphosis grammars (Colmerauer, 1970, 1975), the forerunners of 
Prolog, and Definite Clause Grammars (Pereira and Warren, 1980). Independently, Kay’s 
(1979) work on functional grammar, and shortly later, Bresnan and Kaplan’s (1982) work on 
LFG, established the importance of feature structure unification. The natural language 
understanding field took off during this period, beginning with TerryWinograd’s SHRDLU 
system, which simulated a robot embedded in a world of toy blocks (Winograd, 1972). The 
program was able to accept natural language text 
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commands (Move the red block on top of the smaller green one) of a hitherto unseen 
complexity and sophistication. His system was also the first to attempt to build an extensive 
(for the time) grammar of English, based on Halliday’s systemic grammar. 

Winograd’s model made it clear that the problem of parsing was well-enough understood to 
begin to focus on semantics and discourse models. Roger Schank and his colleagues and 
students (in what was often referred to as the Yale School) built a series of language 
understanding programs that focused on human conceptual knowledge such as scripts, plans 
and goals, and human memory organization (Schank and Albelson, 1977; Schank and 
Riesbeck, 1981; Cullingford, 1981; Wilensky, 1983; Lehnert, 1977). This work often used 
network-based semantics (Quillian, 1968; Norman and Rumelhart, 1975; Schank, 1972; 
Wilks, 1975b, 1975a; Kintsch, 1974) and began to incorporate Fillmore’s notion of case roles 
(Fillmore, 1968) into their representations (Simmons, 1973). The logic-based and 
natural-language understanding paradigms were unified on systems that used predicate logic 
as a semantic representation, such as the LUNAR question-answering system (Woods, 1967, 
1973). 

The discourse modeling paradigm focused on four key areas in discourse. Grosz and her 
colleagues introduced the study of substructure in discourse, and of discourse focus (Grosz, 
1977; Sidner, 1983), a number of researchers began to work on automatic reference 
resolution (Hobbs, 1978), and the BDI (Belief-Desire-Intention) framework for logic-based 
work on speech acts was developed (Perrault and Allen, 1980; Cohen and Perrault, 1979). 

Empiricism and Finite State Models Redux: 1983–1993 

This next decade saw the return of two classes of models which had lost popularity in the late 
1950s and early 1960s, partially due to theoretical arguments against them such as 
Chomsky’s influential review of Skinner’s Verbal Behavior (Chomsky, 1959). The first class 
was finite-state models, which began to receive attention again after work on finite-state 
phonology and morphology by Kaplan and Kay (1981) and finite-state models of syntax by 
Church (1980). A large body of work on finite-state models will be described throughout the 
book. The second trend in this period was what has been called the “return of empiricism”; 
most notably here was the rise of probabilistic models throughout speech and language 
processing, influenced strongly by the work at the IBM Thomas J. Watson Research Center 
on probabilistic models of speech recognition. These probabilistic methods and other such 
data-driven approaches spread from speech into part-of-speech tagging, parsing and 
attachment ambiguities, and semantics. This empirical direction was also accompanied by a 
new focus on model evaluation, based on using held-out data, developing quantitative metrics 
for evaluation, and emphasizing the comparison of performance on these metrics with 
previous published research. This period also saw considerable work on natural language 
generation. 

The Field Comes Together: 1994–1999 
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By the last five years of the millennium it was clear that the field was vastly changing. First, 
probabilistic and data-driven models had become quite standard throughout natural language 
processing. Algorithms for parsing, part-of-speech tagging, reference resolution, and 
discourse processing all began to incorporate probabilities, and employ evaluation 
methodologies borrowed from speech recognition and information retrieval. Second, the 
increases in the speed and memory of computers had allowed commercial exploitation of a 
number of subareas of speech and language processing, in particular speech recognition and 
spelling and grammar checking. Speech and language processing algorithms began to be 
applied to Augmentative and Alternative Communication (AAC). Finally, the rise of the Web 
emphasized the need for language-based information retrieval and information extraction. 

The Rise of Machine Learning: 2000–2007 

The empiricist trends begun in the latter part of the 1990s accelerated at an astounding pace 
in the new century. This acceleration was largely driven by three synergistic trends. First, 
large amounts of spoken and written material became widely available through the auspices 
of the Linguistic Data Consortium (LDC), and other similar organizations. Importantly, 
included among these materials were annotated collections such as the Penn 
Treebank(Marcus et al., 1993), Prague Dependency Treebank(Hajiˇc, 1998), 
PropBank(Palmer et al., 2005), Penn Discourse Treebank(Miltsakaki et al., 2004), 
RSTBank(Carlson et al., 2001) and TimeBank(?), all of which layered standard text sources 
with various forms of syntactic, semantic and pragmatic annotations. The existence of these 
resources promoted the trend of casting more complex traditional problems, such as parsing 
and semantic analysis, as problems in supervised machine learning. These resources also 
promoted the establishment of additional competitive evaluations for parsing (Dejean and 
Tjong Kim Sang, 2001), information extraction, word sense disambiguation(Palmer et al., 
2001; Kilgarriff and Palmer, 2000) and question answering(Voorhees and Tice, 1999). 
Second, this increased focus on learning led to a more serious interplay with the statistical 
machine learning community. Techniques such as support vector machines ( Vapnik, 1995), 
multinomial logistic regression (MaxEnt) (Berger et al., 1996), and graphical Bayesian 
models (Pearl, 1988) became standard practice in computational linguistics. Third, the 
widespread availability of high-performance computing systems facilitated the training and 
deployment of systems that could not have been imagined a decade earlier. Finally, near the 
end of this period, largely unsupervised statistical approaches began to receive renewed 
attention. Progress on statistical approaches to machine translation( Brown et al., 1990; Och 
and Ney, 2003) and topic modeling demonstrated that effective applications could be 
constructed from systems trained on unannotated data alone. In addition, the widespread cost 
and difficulty of producing reliably annotated corpora became a limiting factor in the use of 
supervised approaches for many problems. This trend towards the use unsupervised 
techniques will likely increase. 

 

7 
 



NLP UNIT-1: Introduction to NLP, Regular 
Expressions, DFA 
 
Challenges in NLP  

•  Ambiguity  

o  Words/sentences can have multiple meanings (e.g., “bank” → river bank vs. 

financial bank).  

•  Context Understanding  

o  Handling sarcasm, irony, pragmatics, and discourse-level understanding.  

•  Multilinguality  

o  Different grammar, word order, morphology across languages.  

•  Low-Resource Languages 

o  Many Indian and African languages lack annotated corpora.  

•  World Knowledge Integration  

o  Machines need background knowledge to interpret meaning correctly.  

•  Bias and Fairness  

o  Models can amplify social, gender, or cultural biases from training data.  

•  Scalability  

o  Large transformer models require huge computational resources.  

•  Ethical Issues  

●​ Misinformation, deepfakes, surveillance, and misuse of NLP technology. 

 

Language and Grammar in NLP 

Language and grammar are the foundation of NLP. Grammar formalisms like CFG, PSG, and 

Dependency Grammar help computationally model language, while challenges like 
ambiguity 

and idioms make the task complex. 
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1. Role of Language in NLP  

•  Language is the medium of communication between humans and machines.  

•  NLP aims to model both the structure (syntax) and meaning (semantics) of language 

for computational use.  

•  A system must handle words, phrases, clauses, and sentences while preserving 

meaning.  

2. Grammar in NLP  

Grammar defines the rules and structure of a language. In NLP, grammar is essential for:  

•  Parsing: Analyzing sentence structure.  

•  Machine Translation: Ensuring syntactic correctness.  

•  Question Answering: Understanding sentence intent.  

3. Types of Grammar in NLP 

(a) Morphology  

•  Study of word formation and structure.  
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•  Example: play → plays, playing, played.  

(b) Syntax  

•  Study of sentence structure (rules for arranging words).  

•  Example:  

o  Correct: The cat sat on the mat.  

o  Incorrect: Cat mat sat the on.  

(c) Semantics  

•  Deals with meaning of words and sentences.  

•  Example: John kicked the ball vs. The ball kicked John (different meanings).  

(d) Pragmatics  

•  Study of contextual meaning (depends on situation).  

•  Example: “Can you pass the salt?” → a request, not a question about ability.  

(e) Discourse  

•  Concerned with multiple sentences together.  

•  Example: She went to the market. She bought apples. → pronoun she refers to same 

person.  

(f) Phonology (Speech-based NLP)  

•  Study of sound systems in language.  

4. Grammar Formalisms in NLP  

1.  Phrase Structure Grammar (PSG)  

o  Represents sentences as hierarchical structures.  

o  Example: Sentence (S) → Noun Phrase (NP) + Verb Phrase (VP).  

2.  Dependency Grammar  

o  Represents grammatical relationships as dependencies between words. 

o  Example: In “She eats apples”, eats → head verb, she → subject, apples → 

object.  

3.  Context-Free Grammar (CFG)  
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o  Uses rules like S → NP VP to generate valid sentences.  

4.  Transformational Grammar (Chomsky)  

o  Describes how deep structures can be transformed into surface forms.  

5. Challenges in Using Grammar for NLP  

•  Ambiguity:  

o  “I saw the man with a telescope” → who has the telescope?  

•  Ellipsis: Missing words in sentences.  

•  Idioms: Non-literal expressions (“kick the bucket” ≠ kick + bucket).  

•  Cross-linguistic variation: Different languages follow different grammar rules. 

 

Regular Expressions 

One of the unsung successes in standardization in computer science has been the regular 
expression (RE), a language for specifying text search REGULAR strings. The regular 
expression languages used for searching texts in UNIX (vi, Perl, Emacs, grep), Microsoft 
Word (version 6 and beyond), and WordPerfect are almost identical, and many RE features 
exist in the various Web search engines. Besides this practical use, the regular expression is 
an important theoretical tool throughout computer science and linguistics. 

A regular expression (first developed by Kleene (1956) but see the History section for more 
details) is a formula in a special language that is used for specifying simple STRINGS classes 
of strings. A string is a sequence of symbols; for the purpose of most text based search 
techniques, a string is any sequence of alphanumeric characters (letters, numbers, spaces, 
tabs, and punctuation). For these purposes a space is just a character like any other, and we 
represent it with the symbol . 

Formally, a regular expression is an algebraic notation for characterizing a set of strings. Thus 
they can be used to specify search strings as well as to define a language in a formal way. We 
will begin by talking about regular expressions as a way of specifying searches in texts, and 
proceed to other uses. 

Definition: A regular expression is a sequence of symbols and characters that defines a 

search pattern, mainly for string matching and text processing.  

•  Role in NLP:  

o  Tokenization (splitting sentences/words).  
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o  Pattern matching (finding dates, phone numbers, emails).  

o  Text normalization (removing punctuation, replacing characters).  

o  Morphological analysis (finding word stems, suffixes, prefixes).  

•  Examples:  

o  \d+ → matches numbers (e.g., 123).  

o  [A-Z][a-z]+ → matches proper nouns (e.g., India, John). 

 

Basic Matchers of RE 

Format Description Example 

abc Literal characters cat 

. Any single character (except newline) b.t 

\ Escapes a special character \. 

| Alternation (OR) gray|grey 

 

Character Sets in RE 

Format Description Example 

[abc] Any one character in the brackets [bt]at 

[^abc] Any character NOT in the brackets [^b]at 

[a-z] Range of lowercase letters [a-c]at 

[0-9] Any single digit ID-[0-9] 
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Meta Characters in RE 

Format Description Example 

\d Any digit (same as [0-9]) \d\d 

\D Any non-digit \D\D 

\w Word character (alphanumeric + _) \w 

\W Non-word character \W 

\s Whitespace (space, tab, newline) \d\s\d 

 

Quantifiers in RE 

Format Description Example 

* 0 or more times hi* 

+ 1 or more times hi+ 

? 0 or 1 time (optional) colou?r 

{n} Exactly $n$ times \d{3} 

{n,} $n$ or more times \w{5,} 

{n,m} Between $n$ and $m$ times \d{2,4} 
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Anchors in RE 

Format Description Example 

^ Start of a string/line ^Hello 

$ End of a string/line bye$ 

\b Word boundary \bcat\b 

 

Grouping and Capturing in RE 

Format Description Example 

(...) Capturing Group (ha)+ 

(?:...) Non-capturing Group (?:dog|cat) 

$1, $2 Back-references Replace (\w+) (\w+) w

 

Some Basic Examples 

Target Data Pattern (Regex) 

Email Address ^[\w.-]+@[\w.-]+\.[a-z]{2,}$ 

Phone (US) ^\d{3}-\d{3}-\d{4}$ 

Date (YYYY-MM-DD) \d{4}-\d{2}-\d{2} 

HTML Tags <[^>]+> 
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Finite State Automata 

The regular expression is more than just a convenient metalanguage for text searching. First, 
a regular expression is one way of describing a finite-state automaton (FSA). FSA 
Finite-state automata are the theoretical foundation of a good deal of the computational work. 
Any regular expression can be implemented as a finite-state automaton. Symmetrically, any 
finite-state automaton can be described with a regular expression. Second, a regular 
expression is one way of characterizing a particular kind REGULAR LANGUAGE of formal 
language called a regular language. Both regular expressions and finite state automata can 
be used to describe regular languages. 

 

Deterministic Finite State Automata (DFA) 

The automaton (i.e., machine,also called finite automaton, finite-state automaton, or FSA) 
recognizes a set of strings, in this case the strings characterizing sheep talk, in the same way 
that a regular expression does. We represent the automaton as a directed graph: a finite set of 
vertices (also called nodes), together with a set of directed links between pairs of vertices 
called arcs. We’ll represent vertices with circles and arcs with arrows. The automaton has five 
STATES statess, which are represented by nodes in the graph. State 0 is the start state. In 
our START STATE examples state 0 will generally be the start state; to mark another state as 
the start state we can add an incoming arrow to the start state. State 4 is the final state or 
accepting state, which we represent by the double circle. It also has four transitions, which 
we represent by arcs in the graph. 

The FSA can be used for recognizing (we also say accepting) strings in the following way. 
First, think of the input as being written on a long tape broken up into cells, with one symbol 
written in each cell of the tape. 
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The machine starts in the start state (q0), and iterates the following process: Check the next 
letter of the input. If it matches the symbol on an arc leaving the current state, then cross that 
arc, move to the next state, and also advance one symbol in the input. If we are in the 
accepting state (q4) when we run out of input, the machine has successfully recognized an 
instance of sheeptalk. If the machine never gets to the final state, either because it runs out of 
input, or it gets some input that doesn’t match an arc (as in Fig. 2.11), or if it just happens to 
get stuck in some non-final state, we say the machine rejects or fails  to accept an input. 

We can also represent an automaton with a state-transition table. As in the graph TABLE 
notation, the state-transition table represents the start state, the accepting states, and what 
transitions leave each state with which symbols. Here’s the state-transition table for the FSA. 

 

We’ve marked state 4 with a colon to indicate that it’s a final state (you can have as many 
final states as you want), and the /0 indicates an illegal or missing transition. We can read the 
first row as “if we’re in state 0 and we see the input b we must go to state 1. If we’re in state 
0 and we see the input a or !, we fail”. 

More formally, a finite automaton is defined by the following five parameters: 

Q = q0q1q2 . . .qN−1 a finite set of N states 

S a finite input alphabet of symbols 

q0 the start state 

F the set of final states, F ⊆ Q 
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d(q, i) the transition function or transition matrix between states. Given a state q ∈ Q and an 
input symbol i ∈ S, d(q, i) returns a new state q′ ∈ Q. d is thus a relation from Q×S to Q; 

 

The input abc will fail to be recognized since there is no legal transition out of state q0 on the 
input a. Even if the automaton had allowed an initial a it would have certainly failed on c, 
since c isn’t even in the sheeptalk alphabet! We can think of these “empty” elements in the 
table as if they all pointed at one “empty” state, which we might call the fail state or sink 
state. In a sense then, we could FAIL STATE view any machine with empty transitions as if 
we had augmented it with a fail state, and drawn in all the extra arcs, so we always had 
somewhere to go from any state on any possible input. 

 

Non Deterministic FSA’s 

 

The only difference between this automaton and the previous one is that here  the self-loop is 
on state 2 instead of state 3. Consider using this network as an automaton for recognizing 
sheeptalk. When we get to state 2, if we see an a we don’t know whether to remain in state 2 
or go on to state 3. Automata with decision points like this are called non-deterministic 
FSAs (or NFSAs). Recall by contrast NFSA that Figure 2.10 specified a deterministic 
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automaton, i.e., one whose behavior during recognition is fully determined by the state it is in 
and the symbol it is looking at. A deterministic automaton can be referred to as a DFSA.  

There is another common type of non-determinism, caused by arcs that have no symbols on 
them (called e-transitions).  

 

If we want to know whether a string is an instance of regular expression or not, and if we use 
a non-deterministic machine to recognize it, we might follow the wrong arc and reject it when 
we should have accepted it. That is, since there is more than one choice at some point, we 
might take the wrong choice. This problem of choice in non-deterministic models will come 
up again and again as we build computational models, particularly for parsing. There are 
three standard solutions to the problem of non-determinism: 

• Backup: Whenever we come to a choice point, we could put a marker to mark where we 
were in the input, and what state the automaton was in. Then if it turns out that we took the 
wrong choice, we could back up and try another path. 

• Look-ahead: We could look ahead in the input to help us decide which path totake. 

• Parallelism: Whenever we come to a choice point, we could look at every alternative path 
in parallel. 

The backup approach suggests that we should blithely make choices that might lead to 
deadends, knowing that we can always return to unexplored alternative choices.  There are 
two keys to this approach: we need to remember all the alternatives for each choice point, and 
we need to store sufficient information about each alternative so that we can return to it when 
necessary. When a backup algorithm reaches a point in its processing where no progress can 
be made (because it runs out of input, or has no legal transitions), it returns to a previous 
choice point, selects one of the unexplored alternatives, and continues from there. Applying 
this notion to our non-deterministic recognizer, we need only remember two things for each 
choice point: the state, or node, of the machine that we can go to and the corresponding 
position on the tape. We will call the combination of the node and position the search-state 
of the recognition algorithm. To avoid confusion, we will refer to the state of the automaton 
(as opposed to the state of the search) as a node or a machine-state. 
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