
Polling-based Joystick API 
The current proposal for accessing Joysticks from Mozilla is an event-based one, mirroring 
keyboard and mouse input. https://wiki.mozilla.org/JoystickAPI 
 
At 60fps, with all the of the analog buttons, triggers, vibration, gyroscope on modern game pad 
(PS3, Xbox 360, and others) there will easily be many events within each 16ms frame. 
 
With so many events, it’s both inefficient, as many events will only be handled in order to update 
the “current state”, and complex to correctly maintain and update the state, which will have to be 
written in every application. 
 
On the positive side, events and polling are not mutually exclusive. While it seems like the 
primary use-case for gamepad input is for games, which would prefer polling, there may be 
some uses where the event-based is better, say for using the gamepad as an input device to 
advance frames in a presentation. 
 

Polling proposal sketch 
 

navigator.joystick.getFeatures(index) 
 
Returns Object containing information about details of hardware. 
 

numAxes integral Number >= 0 

numButtons integral Number >= 0 

numTriggers integral Number >= 0 

numAccelerometers integral Number >= 0 

 
 
Note voice, vibration, and other extended features of controllers to be handled via cooperation 
with other future APIs. It would be nice to ensure that there’s a trivial mapping between the 
index used for identification here, and in those other APIs. 
 



The number of buttons, triggers, axes, and accelerometers depends on the connected 
hardware. 
 

navigator.joystick.getState(index) 
 
Returns null if there is no joystick currently connected at that index, otherwise an Object 
containing: 

timestamp monotonically increasing number to determine if hardware has been 
polled since previous getState() call 

inputs Array of Numbers indexed by constants defined below. 

 
 
.inputs is indexed by the following constants: 
 

2D Axes 
These are typically thumbsticks or full hand joysticks. Axes are indexed by constants named 
navigator.joystick.XAXIS_0 
navigator.joystick.YAXIS_0 
navigator.joystick.XAXIS_1 
navigator.joystick.YAXIS_1 
… 
up to XAXIS_0 + getFeatures(i).numAxes - 1. 
 
Note that for all pairs of symbolic axis names, XAXIS_0 + 1 = YAXIS_0, and YAXIS_0 + 1 = 
XAXIS_1, etc. 
 
All axis values should be normalized to [-1.0 .. 1.0]. On a standard joystick controller, left and up 
should be -1.0, and right and down 1.0. 
 

Buttons 
Indexed by constants named 
navigator.joystick.BUTTON_0 
navigator.joystick.BUTTON_1 
… 
up to BUTTON_0 + getFeatures(i).numButtons - 1 
 
Note that BUTTON_0 + 1 == BUTTON_1, etc. 



 
Button values should be normalized to the range [0.0 .. 1.0], where 0.0 means fully unpressed, 
and 1.0 means fully pressed. 
 

Triggers 
Indexed by constants named 
navigator.joystick.TRIGGER_0 
navigator.joystick.TRIGGER_1 
… 
up to TRIGGER_0 + getFeatures(i).numTriggers - 1 
 
Note that TRIGGER_0 + 1 == TRIGGER_1, etc. 
 
Trigger values should be normalized to the range [0.0 .. 1.0], where 0.0 means fully unpressed, 
and 1.0 means fully pressed. 
 

Accelerometers 
Indexed by constants named 
navigator.joystick.ACCELEROMETER_0 
navigator.joystick.ACCELEROMETER_1 
… 
up to ACCELEROMETER_0 + getFeatures(i).numAccelerometers - 1 
 
Note that ACCELEROMETER_0 + 1 == ACCELEROMETER_1, etc. 
 
Accelerometer values should be normalized and separated into individual axes as necessary. 
Each axis value should be normalized to the range [-1.0 .. 1.0]. 
 

Discussion 
It is intended that these values are not interpreted, dead-zoned, etc. in any way and that 
interpretation is handled at a higher level. All values are returned as normalized floating point 
numbers even if the device only supports digital input. 
 
Mapping of buttons and triggers is undefined, but buttons should appear in decreasing order of 
importance, so that the primary button is element 0, the secondary button is element 1, and so 
on, depending on the capabilities of the device. todo; This is pretty vague. Canonical orderings 
for popular controllers are probably necessary to avoid a big cross-browser mess. It would be 
nice to include definitions like X360_A == BUTTON_0, PS3_CIRCLE == BUTTON_1, and so on 
at the risk of getting overly specific. 



 
The device need not be synchronously polled for this call (hence the timestamp field), but it 
should be polled as frequently as makes sense on the target platform, preferably to allow 60 fps 
or greater input sampling. 
 
The values are stored in an array indexed by constants (rather than named fields, or separate 
arrays for each type of input) to allow for the common use of remapping, and iterating over all 
values to find deltas. It is intended that future devices will require new constants and types to be 
added, but this should be balanced by not having too many different input “types” so that in 
general games are able work with buttons, triggers, etc. without knowing about the specific 
details of the joystick. 
 
Output to the vibration motors of the joysticks is omitted from the API with the thought that 
vibration could be shared with a future API that would vibrate things other than joysticks (esp. 
phones). 
 
todo; It is not yet clear if implementations may need an open/close API around getState() to 
optimize access to the hardware. It would be nice to avoid if possible. 
 
It’d be helpful for games to have navigator.keyboard.getState() and navigator.mouse.getState() 
to go along with navigator.joystick.getState() too. 
 
 


	Polling-based Joystick API 
	Polling proposal sketch 
	navigator.joystick.getFeatures(index) 
	navigator.joystick.getState(index) 
	2D Axes 
	Buttons 
	Triggers 
	Accelerometers 


	Discussion 


