
Chapter 8: Memory Management  
Effective memory management is crucial for intelligent agents to retain information. 
Agents require different types of memory, much like humans, to operate efficiently. 
This chapter delves into memory management, specifically addressing the immediate 
(short-term) and persistent (long-term) memory requirements of agents. 

In agent systems, memory refers to an agent's ability to retain and utilize information 
from past interactions, observations, and learning experiences. This capability allows 
agents to make informed decisions, maintain conversational context, and improve over 
time. Agent memory is generally categorized into two main types: 

●​ Short-Term Memory (Contextual Memory): Similar to working memory, this 
holds information currently being processed or recently accessed. For agents 
using large language models (LLMs), short-term memory primarily exists within 
the context window. This window contains recent messages, agent replies, tool 
usage results, and agent reflections from the current interaction, all of which 
inform the LLM's subsequent responses and actions. The context window has a 
limited capacity, restricting the amount of recent information an agent can 
directly access. Efficient short-term memory management involves keeping the 
most relevant information within this limited space, possibly through 
techniques like summarizing older conversation segments or emphasizing key 
details. The advent of models with 'long context' windows simply expands the 
size of this short-term memory, allowing more information to be held within a 
single interaction. However, this context is still ephemeral and is lost once the 
session concludes, and it can be costly and inefficient to process every time. 
Consequently, agents require separate memory types to achieve true 
persistence, recall information from past interactions, and build a lasting 
knowledge base. 

●​ Long-Term Memory (Persistent Memory): This acts as a repository for 
information agents need to retain across various interactions, tasks, or 
extended periods, akin to long-term knowledge bases. Data is typically stored 
outside the agent's immediate processing environment, often in databases, 
knowledge graphs, or vector databases. In vector databases, information is 
converted into numerical vectors and stored, enabling agents to retrieve data 
based on semantic similarity rather than exact keyword matches, a process 
known as semantic search. When an agent needs information from long-term 
memory, it queries the external storage, retrieves relevant data, and integrates 
it into the short-term context for immediate use, thus combining prior 
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knowledge with the current interaction. 

Practical Applications & Use Cases 
Memory management is vital for agents to track information and perform intelligently 
over time. This is essential for agents to surpass basic question-answering 
capabilities. Applications include: 

●​ Chatbots and Conversational AI: Maintaining conversation flow relies on 
short-term memory. Chatbots require remembering prior user inputs to provide 
coherent responses. Long-term memory enables chatbots to recall user 
preferences, past issues, or prior discussions, offering personalized and 
continuous interactions. 

●​ Task-Oriented Agents: Agents managing multi-step tasks need short-term 
memory to track previous steps, current progress, and overall goals. This 
information might reside in the task's context or temporary storage. Long-term 
memory is crucial for accessing specific user-related data not in the immediate 
context. 

●​ Personalized Experiences: Agents offering tailored interactions utilize 
long-term memory to store and retrieve user preferences, past behaviors, and 
personal information. This allows agents to adapt their responses and 
suggestions. 

●​ Learning and Improvement: Agents can refine their performance by learning 
from past interactions. Successful strategies, mistakes, and new information 
are stored in long-term memory, facilitating future adaptations. Reinforcement 
learning agents store learned strategies or knowledge in this way. 

●​ Information Retrieval (RAG): Agents designed for answering questions 
access a knowledge base, their long-term memory, often implemented within 
Retrieval Augmented Generation (RAG). The agent retrieves relevant 
documents or data to inform its responses. 

●​ Autonomous Systems: Robots or self-driving cars require memory for maps, 
routes, object locations, and learned behaviors. This involves short-term 
memory for immediate surroundings and long-term memory for general 
environmental knowledge. 

Memory enables agents to maintain history, learn, personalize interactions, and 
manage complex, time-dependent problems. 
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Hands-On Code: Memory Management in Google 
Agent Developer Kit (ADK) 
The Google Agent Developer Kit (ADK) offers a structured method for managing 
context and memory, including components for practical application. A solid grasp of 
ADK's Session, State, and Memory is vital for building agents that need to retain 
information. 

Just as in human interactions, agents require the ability to recall previous exchanges 
to conduct coherent and natural conversations. ADK simplifies context management 
through three core concepts and their associated services. 

Every interaction with an agent can be considered a unique conversation thread. 
Agents might need to access data from earlier interactions. ADK structures this as 
follows: 

●​ Session: An individual chat thread that logs messages and actions (Events) for 
that specific interaction, also storing temporary data (State) relevant to that 
conversation. 

●​ State (session.state): Data stored within a Session, containing information 
relevant only to the current, active chat thread. 

●​ Memory: A searchable repository of information sourced from various past 
chats or external sources, serving as a resource for data retrieval beyond the 
immediate conversation. 

ADK provides dedicated services for managing critical components essential for 
building complex, stateful, and context-aware agents. The SessionService manages 
chat threads (Session objects) by handling their initiation, recording, and termination, 
while the MemoryService oversees the storage and retrieval of long-term knowledge 
(Memory). 

Both the SessionService and MemoryService offer various configuration options, 
allowing users to choose storage methods based on application needs. In-memory 
options are available for testing purposes, though data will not persist across restarts. 
For persistent storage and scalability, ADK also supports database and cloud-based 
services. 
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Session: Keeping Track of Each Chat 
A Session object in ADK is designed to track and manage individual chat threads. 
Upon initiation of a conversation with an agent, the SessionService generates a 
Session object, represented as `google.adk.sessions.Session`. This object 
encapsulates all data relevant to a specific conversation thread, including unique 
identifiers (id, app_name, user_id), a chronological record of events as Event objects, 
a storage area for session-specific temporary data known as state, and a timestamp 
indicating the last update (last_update_time). Developers typically interact with 
Session objects indirectly through the SessionService. The SessionService is 
responsible for managing the lifecycle of conversation sessions, which includes 
initiating new sessions, resuming previous sessions, recording session activity 
(including state updates), identifying active sessions, and managing the removal of 
session data. The ADK provides several SessionService implementations with varying 
storage mechanisms for session history and temporary data, such as the 
InMemorySessionService, which is suitable for testing but does not provide data 
persistence across application restarts. 
 

# Example: Using InMemorySessionService 
# This is suitable for local development and testing where data  
# persistence across application restarts is not required. 
from google.adk.sessions import InMemorySessionService 
session_service = InMemorySessionService() 

 

Then there's DatabaseSessionService if you want reliable saving to a database you 
manage.  

# Example: Using DatabaseSessionService 
# This is suitable for production or development requiring persistent 
storage. 
# You need to configure a database URL (e.g., for SQLite, PostgreSQL, 
etc.). 
# Requires: pip install google-adk[sqlalchemy] and a database driver 
(e.g., psycopg2 for PostgreSQL) 
from google.adk.sessions import DatabaseSessionService 
# Example using a local SQLite file: 
db_url = "sqlite:///./my_agent_data.db" 
session_service = DatabaseSessionService(db_url=db_url) 
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Besides, there's VertexAiSessionService which uses Vertex AI infrastructure for 
scalable production on Google Cloud. 

# Example: Using VertexAiSessionService 
# This is suitable for scalable production on Google Cloud Platform, 
leveraging 
# Vertex AI infrastructure for session management. 
# Requires: pip install google-adk[vertexai] and GCP 
setup/authentication 
from google.adk.sessions import VertexAiSessionService 
 
PROJECT_ID = "your-gcp-project-id" # Replace with your GCP project ID 
LOCATION = "us-central1" # Replace with your desired GCP location 
# The app_name used with this service should correspond to the 
Reasoning Engine ID or name 
REASONING_ENGINE_APP_NAME = 
"projects/your-gcp-project-id/locations/us-central1/reasoningEngines/
your-engine-id" # Replace with your Reasoning Engine resource name 
 
session_service = VertexAiSessionService(project=PROJECT_ID, 
location=LOCATION) 
# When using this service, pass REASONING_ENGINE_APP_NAME to service 
methods: 
# session_service.create_session(app_name=REASONING_ENGINE_APP_NAME, 
...) 
# session_service.get_session(app_name=REASONING_ENGINE_APP_NAME, 
...) 
# session_service.append_event(session, event, 
app_name=REASONING_ENGINE_APP_NAME) 
# session_service.delete_session(app_name=REASONING_ENGINE_APP_NAME, 
...) 

 

Choosing an appropriate SessionService is crucial as it determines how the agent's 
interaction history and temporary data are stored and their persistence. 

Each message exchange involves a cyclical process: A message is received, the 
Runner retrieves or establishes a Session using the SessionService, the agent 
processes the message using the Session's context (state and historical interactions), 
the agent generates a response and may update the state, the Runner encapsulates 
this as an Event, and the session_service.append_event method records the new 
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event and updates the state in storage. The Session then awaits the next message. 
Ideally, the delete_session method is employed to terminate the session when the 
interaction concludes. This process illustrates how the SessionService maintains 
continuity by managing the Session-specific history and temporary data. 

State: The Session's Scratchpad 

In the ADK, each Session, representing a chat thread, includes a state component akin 
to an agent's temporary working memory for the duration of that specific 
conversation. While session.events logs the entire chat history, session.state stores 
and updates dynamic data points relevant to the active chat. 

Fundamentally, session.state operates as a dictionary, storing data as key-value pairs. 
Its core function is to enable the agent to retain and manage details essential for 
coherent dialogue, such as user preferences, task progress, incremental data 
collection, or conditional flags influencing subsequent agent actions. 

The state’s structure comprises string keys paired with values of serializable Python 
types, including strings, numbers, booleans, lists, and dictionaries containing these 
basic types. State is dynamic, evolving throughout the conversation. The permanence 
of these changes depends on the configured SessionService. 

State organization can be achieved using key prefixes to define data scope and 
persistence. Keys without prefixes are session-specific.  

●​ The user: prefix associates data with a user ID across all sessions.  
●​ The app: prefix designates data shared among all users of the application.  
●​ The temp: prefix indicates data valid only for the current processing turn and is 

not persistently stored.  

The agent accesses all state data through a single session.state dictionary. The 
SessionService handles data retrieval, merging, and persistence. State should be 
updated upon adding an Event to the session history via 
session_service.append_event(). This ensures accurate tracking, proper saving in 
persistent services, and safe handling of state changes. 

 
1.​ The Simple Way: Using output_key (for Agent Text Replies): This is the 

easiest method if you just want to save your agent's final text response directly 
into the state. When you set up your LlmAgent, just tell it the output_key you want 
to use. The Runner sees this and automatically creates the necessary actions to 
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save the response to the state when it appends the event. Let's look at a code 
example demonstrating state update via output_key. 

# Import necessary classes from the Google Agent Developer Kit 
(ADK) 
from google.adk.agents import LlmAgent 
from google.adk.sessions import InMemorySessionService, Session 
from google.adk.runners import Runner 
from google.genai.types import Content, Part 
 
# Define an LlmAgent with an output_key. 
greeting_agent = LlmAgent( 
   name="Greeter", 
   model="gemini-2.0-flash", 
   instruction="Generate a short, friendly greeting.", 
   output_key="last_greeting" 
) 
 
# --- Setup Runner and Session --- 
app_name, user_id, session_id = "state_app", "user1", "session1" 
session_service = InMemorySessionService() 
runner = Runner( 
   agent=greeting_agent, 
   app_name=app_name, 
   session_service=session_service 
) 
session = session_service.create_session( 
   app_name=app_name, 
   user_id=user_id, 
   session_id=session_id 
) 
 
print(f"Initial state: {session.state}") 
 
# --- Run the Agent --- 
user_message = Content(parts=[Part(text="Hello")]) 
print("\n--- Running the agent ---") 
for event in runner.run( 
   user_id=user_id, 
   session_id=session_id, 
   new_message=user_message 
): 
   if event.is_final_response(): 
     print("Agent responded.") 
 
# --- Check Updated State --- 
# Correctly check the state *after* the runner has finished 
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processing all events. 
updated_session = session_service.get_session(app_name, user_id, 
session_id) 
print(f"\nState after agent run: {updated_session.state}") 

 

Behind the scenes, the Runner sees your output_key and automatically creates the 
necessary actions with a state_delta when it calls append_event. 

2.​ The Standard Way: Using EventActions.state_delta (for More Complicated 
Updates): For times when you need to do more complex things – like updating 
several keys at once, saving things that aren't just text, targeting specific scopes 
like user: or app:, or making updates that aren't tied to the agent's final text reply 
– you'll manually build a dictionary of your state changes (the state_delta) and 
include it within the EventActions of the Event you're appending. Let's look at one 
example: 

import time 
from google.adk.tools.tool_context import ToolContext 
from google.adk.sessions import InMemorySessionService 
 
# --- Define the Recommended Tool-Based Approach --- 
def log_user_login(tool_context: ToolContext) -> dict: 
   """ 
   Updates the session state upon a user login event. 
   This tool encapsulates all state changes related to a user 
login. 
   Args: 
       tool_context: Automatically provided by ADK, gives access 
to session state. 
   Returns: 
       A dictionary confirming the action was successful. 
   """ 
   # Access the state directly through the provided context. 
   state = tool_context.state 
   
   # Get current values or defaults, then update the state. 
   # This is much cleaner and co-locates the logic. 
   login_count = state.get("user:login_count", 0) + 1 
   state["user:login_count"] = login_count 
   state["task_status"] = "active" 
   state["user:last_login_ts"] = time.time() 
   state["temp:validation_needed"] = True 
   
   print("State updated from within the `log_user_login` tool.") 
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   return { 
       "status": "success", 
       "message": f"User login tracked. Total logins: 
{login_count}." 
   } 
 
# --- Demonstration of Usage --- 
# In a real application, an LLM Agent would decide to call this 
tool. 
# Here, we simulate a direct call for demonstration purposes. 
 
# 1. Setup 
session_service = InMemorySessionService() 
app_name, user_id, session_id = "state_app_tool", "user3", 
"session3" 
session = session_service.create_session( 
   app_name=app_name, 
   user_id=user_id, 
   session_id=session_id, 
   state={"user:login_count": 0, "task_status": "idle"} 
) 
print(f"Initial state: {session.state}") 
 
# 2. Simulate a tool call (in a real app, the ADK Runner does 
this) 
# We create a ToolContext manually just for this standalone 
example. 
from google.adk.tools.tool_context import InvocationContext 
mock_context = ToolContext( 
   invocation_context=InvocationContext( 
       app_name=app_name, user_id=user_id, session_id=session_id, 
       session=session, session_service=session_service 
   ) 
) 
 
# 3. Execute the tool 
log_user_login(mock_context) 
 
# 4. Check the updated state 
updated_session = session_service.get_session(app_name, user_id, 
session_id) 
print(f"State after tool execution: {updated_session.state}") 
 
# Expected output will show the same state change as the  
# "Before" case, 
# but the code organization is significantly cleaner  
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# and more robust. 

 
This code demonstrates a tool-based approach for managing user session state in an 
application. It defines a function log_user_login, which acts as a tool. This tool is 
responsible for updating the session state when a user logs in. 
The function takes a ToolContext object, provided by the ADK, to access and modify 
the session's state dictionary. Inside the tool, it increments a user:login_count, sets 
the task_status to "active", records the user:last_login_ts (timestamp), and adds a 
temporary flag temp:validation_needed.  
 
The demonstration part of the code simulates how this tool would be used. It sets up 
an in-memory session service and creates an initial session with some predefined 
state. A ToolContext is then manually created to mimic the environment in which the 
ADK Runner would execute the tool. The log_user_login function is called with this 
mock context. Finally, the code retrieves the session again to show that the state has 
been updated by the tool's execution. The goal is to show how encapsulating state 
changes within tools makes the code cleaner and more organized compared to 
directly manipulating state outside of tools. 
 
Note that direct modification of the `session.state` dictionary after retrieving a 
session is strongly discouraged as it bypasses the standard event processing 
mechanism. Such direct changes will not be recorded in the session's event history, 
may not be persisted by the selected `SessionService`, could lead to concurrency 
issues, and will not update essential metadata such as timestamps. The 
recommended methods for updating the session state are using the `output_key` 
parameter on an `LlmAgent` (specifically for the agent's final text responses) or 
including state changes within `EventActions.state_delta` when appending an event 
via `session_service.append_event()`. The `session.state` should primarily be used for 
reading existing data. 
 
To recap, when designing your state, keep it simple, use basic data types, give your 
keys clear names and use prefixes correctly, avoid deep nesting, and always update 
state using the append_event process. 

Memory: Long-Term Knowledge with MemoryService 

In agent systems, the Session component maintains a record of the current chat 
history (events) and temporary data (state) specific to a single conversation. However, 
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for agents to retain information across multiple interactions or access external data, 
long-term knowledge management is necessary. This is facilitated by the 
MemoryService. 
 

# Example: Using InMemoryMemoryService 
# This is suitable for local development and testing where data  
# persistence across application restarts is not required.  
# Memory content is lost when the app stops. 
from google.adk.memory import InMemoryMemoryService 
memory_service = InMemoryMemoryService() 

 
Session and State can be conceptualized as short-term memory for a single chat 
session, whereas the Long-Term Knowledge managed by the MemoryService 
functions as a persistent and searchable repository. This repository may contain 
information from multiple past interactions or external sources. The MemoryService, 
as defined by the BaseMemoryService interface, establishes a standard for managing 
this searchable, long-term knowledge. Its primary functions include adding 
information, which involves extracting content from a session and storing it using the 
add_session_to_memory method, and retrieving information, which allows an agent to 
query the store and receive relevant data using the search_memory method. 
 
The ADK offers several implementations for creating this long-term knowledge store. 
The InMemoryMemoryService provides a temporary storage solution suitable for 
testing purposes, but data is not preserved across application restarts. For production 
environments, the VertexAiRagMemoryService is typically utilized. This service 
leverages Google Cloud's Retrieval Augmented Generation (RAG) service, enabling 
scalable, persistent, and semantic search capabilities (Also, refer to the chapter 14 on 
RAG). 

# Example: Using VertexAiRagMemoryService 
# This is suitable for scalable production on GCP, leveraging 
# Vertex AI RAG (Retrieval Augmented Generation) for persistent,  
# searchable memory. 
# Requires: pip install google-adk[vertexai], GCP  
# setup/authentication, and a Vertex AI RAG Corpus. 
from google.adk.memory import VertexAiRagMemoryService 
 
# The resource name of your Vertex AI RAG Corpus 
RAG_CORPUS_RESOURCE_NAME = 
"projects/your-gcp-project-id/locations/us-central1/ragCorpora/your-c
orpus-id" # Replace with your Corpus resource name 
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# Optional configuration for retrieval behavior 
SIMILARITY_TOP_K = 5 # Number of top results to retrieve 
VECTOR_DISTANCE_THRESHOLD = 0.7 # Threshold for vector similarity 
 
memory_service = VertexAiRagMemoryService( 
   rag_corpus=RAG_CORPUS_RESOURCE_NAME, 
   similarity_top_k=SIMILARITY_TOP_K, 
   vector_distance_threshold=VECTOR_DISTANCE_THRESHOLD 
) 
# When using this service, methods like add_session_to_memory  
# and search_memory will interact with the specified Vertex AI  
# RAG Corpus. 

 

Hands-on code: Memory Management in LangChain 
and LangGraph 
In LangChain and LangGraph, Memory is a critical component for creating intelligent 
and natural-feeling conversational applications. It allows an AI agent to remember 
information from past interactions, learn from feedback, and adapt to user 
preferences. LangChain's memory feature provides the foundation for this by 
referencing a stored history to enrich current prompts and then recording the latest 
exchange for future use. As agents handle more complex tasks, this capability 
becomes essential for both efficiency and user satisfaction. 
 
Short-Term Memory: This is thread-scoped, meaning it tracks the ongoing 
conversation within a single session or thread. It provides immediate context, but a full 
history can challenge an LLM's context window, potentially leading to errors or poor 
performance. LangGraph manages short-term memory as part of the agent's state, 
which is persisted via a checkpointer, allowing a thread to be resumed at any time. 
 
Long-Term Memory: This stores user-specific or application-level data across 
sessions and is shared between conversational threads. It is saved in custom 
"namespaces" and can be recalled at any time in any thread. LangGraph provides 
stores to save and recall long-term memories, enabling agents to retain knowledge 
indefinitely. 
 
LangChain provides several tools for managing conversation history, ranging from 
manual control to automated integration within chains. 
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ChatMessageHistory: Manual Memory Management. For direct and simple control 
over a conversation's history outside of a formal chain, the ChatMessageHistory class 
is ideal. It allows for the manual tracking of dialogue exchanges. 
 

from langchain.memory import ChatMessageHistory 
 
# Initialize the history object 
history = ChatMessageHistory() 
 
# Add user and AI messages 
history.add_user_message("I'm heading to New York next week.") 
history.add_ai_message("Great! It's a fantastic city.") 
 
# Access the list of messages 
print(history.messages) 

 
ConversationBufferMemory: Automated Memory for Chains. For integrating 
memory directly into chains, ConversationBufferMemory is a common choice. It holds 
a buffer of the conversation and makes it available to your prompt. Its behavior can be 
customized with two key parameters: 

●​ memory_key: A string that specifies the variable name in your prompt that will 
hold the chat history. It defaults to "history". 

●​ return_messages: A boolean that dictates the format of the history. 
○​ If False (the default), it returns a single formatted string, which is ideal 

for standard LLMs. 
○​ If True, it returns a list of message objects, which is the recommended 

format for Chat Models. 
 

from langchain.memory import ConversationBufferMemory 
 
# Initialize memory 
memory = ConversationBufferMemory() 
 
# Save a conversation turn 
memory.save_context({"input": "What's the weather like?"}, {"output": 
"It's sunny today."}) 
 
# Load the memory as a string 
print(memory.load_memory_variables({})) 
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Integrating this memory into an LLMChain allows the model to access the 
conversation's history and provide contextually relevant responses 
 

from langchain_openai import OpenAI 
from langchain.chains import LLMChain 
from langchain.prompts import PromptTemplate 
from langchain.memory import ConversationBufferMemory 
 
# 1. Define LLM and Prompt 
llm = OpenAI(temperature=0) 
template = """You are a helpful travel agent. 
 
Previous conversation: 
{history} 
 
New question: {question} 
Response:""" 
prompt = PromptTemplate.from_template(template) 
 
# 2. Configure Memory 
# The memory_key "history" matches the variable in the prompt 
memory = ConversationBufferMemory(memory_key="history") 
 
# 3. Build the Chain 
conversation = LLMChain(llm=llm, prompt=prompt, memory=memory) 
 
# 4. Run the Conversation 
response = conversation.predict(question="I want to book a flight.") 
print(response) 
response = conversation.predict(question="My name is Sam, by the 
way.") 
print(response) 
response = conversation.predict(question="What was my name again?") 
print(response) 

 
For improved effectiveness with chat models, it is recommended to use a structured 
list of message objects by setting `return_messages=True`. 
 

from langchain_openai import ChatOpenAI 
from langchain.chains import LLMChain 
from langchain.memory import ConversationBufferMemory 
from langchain_core.prompts import ( 
   ChatPromptTemplate, 
   MessagesPlaceholder, 
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   SystemMessagePromptTemplate, 
   HumanMessagePromptTemplate, 
) 
 
# 1. Define Chat Model and Prompt 
llm = ChatOpenAI() 
prompt = ChatPromptTemplate( 
   messages=[ 
       SystemMessagePromptTemplate.from_template("You are a friendly 
assistant."), 
       MessagesPlaceholder(variable_name="chat_history"), 
       HumanMessagePromptTemplate.from_template("{question}") 
   ] 
) 
 
# 2. Configure Memory 
# return_messages=True is essential for chat models 
memory = ConversationBufferMemory(memory_key="chat_history", 
return_messages=True) 
 
# 3. Build the Chain 
conversation = LLMChain(llm=llm, prompt=prompt, memory=memory) 
 
# 4. Run the Conversation 
response = conversation.predict(question="Hi, I'm Jane.") 
print(response) 
response = conversation.predict(question="Do you remember my name?") 
print(response) 

 
Types of Long-Term Memory: Long-term memory allows systems to retain 
information across different conversations, providing a deeper level of context and 
personalization. It can be broken down into three types analogous to human memory: 
 

●​ Semantic Memory: Remembering Facts: This involves retaining specific facts 
and concepts, such as user preferences or domain knowledge. It is used to 
ground an agent's responses, leading to more personalized and relevant 
interactions. This information can be managed as a continuously updated user 
"profile" (a JSON document) or as a "collection" of individual factual 
documents. 

●​ Episodic Memory: Remembering Experiences: This involves recalling past 
events or actions. For AI agents, episodic memory is often used to remember 
how to accomplish a task. In practice, it's frequently implemented through 
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few-shot example prompting, where an agent learns from past successful 
interaction sequences to perform tasks correctly. 

●​ Procedural Memory: Remembering Rules:  This is the memory of how to 
perform tasks—the agent's core instructions and behaviors, often contained in 
its system prompt. It's common for agents to modify their own prompts to 
adapt and improve. An effective technique is "Reflection," where an agent is 
prompted with its current instructions and recent interactions, then asked to 
refine its own instructions. 

 
Below is pseudo-code demonstrating how an agent might use reflection to update its 
procedural memory stored in a LangGraph BaseStore 
 

# Node that updates the agent's instructions 
def update_instructions(state: State, store: BaseStore): 
   namespace = ("instructions",) 
   # Get the current instructions from the store 
   current_instructions = store.search(namespace)[0] 
   
   # Create a prompt to ask the LLM to reflect on the conversation 
   # and generate new, improved instructions 
   prompt = prompt_template.format( 
       instructions=current_instructions.value["instructions"], 
       conversation=state["messages"] 
   ) 
   
   # Get the new instructions from the LLM 
   output = llm.invoke(prompt) 
   new_instructions = output['new_instructions'] 
   
   # Save the updated instructions back to the store 
   store.put(("agent_instructions",), "agent_a", {"instructions": 
new_instructions}) 
 
# Node that uses the instructions to generate a response 
def call_model(state: State, store: BaseStore): 
   namespace = ("agent_instructions", ) 
   # Retrieve the latest instructions from the store 
   instructions = store.get(namespace, key="agent_a")[0] 
   
   # Use the retrieved instructions to format the prompt 
   prompt = 
prompt_template.format(instructions=instructions.value["instructions"
]) 
   # ... application logic continues 
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LangGraph stores long-term memories as JSON documents in a store. Each memory 
is organized under a custom namespace (like a folder) and a distinct key (like a 
filename). This hierarchical structure allows for easy organization and retrieval of 
information. The following code demonstrates how to use InMemoryStore to put, get, 
and search for memories. 

from langgraph.store.memory import InMemoryStore 
 
# A placeholder for a real embedding function 
def embed(texts: list[str]) -> list[list[float]]: 
   # In a real application, use a proper embedding model 
   return [[1.0, 2.0] for _ in texts] 
 
# Initialize an in-memory store. For production, use a 
database-backed store. 
store = InMemoryStore(index={"embed": embed, "dims": 2}) 
 
# Define a namespace for a specific user and application context 
user_id = "my-user" 
application_context = "chitchat" 
namespace = (user_id, application_context) 
 
# 1. Put a memory into the store 
store.put( 
   namespace, 
   "a-memory",  # The key for this memory 
   { 
       "rules": [ 
           "User likes short, direct language", 
           "User only speaks English & python", 
       ], 
       "my-key": "my-value", 
   }, 
) 
 
# 2. Get the memory by its namespace and key 
item = store.get(namespace, "a-memory") 
print("Retrieved Item:", item) 
 
# 3. Search for memories within the namespace, filtering by content 
# and sorting by vector similarity to the query. 
items = store.search( 
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   namespace, 
   filter={"my-key": "my-value"}, 
   query="language preferences" 
) 
print("Search Results:", items) 

 

Vertex Memory Bank 
Memory Bank, a managed service in the Vertex AI Agent Engine, provides agents with 
persistent, long-term memory. The service uses Gemini models to asynchronously 
analyze conversation histories to extract key facts and user preferences. 

This information is stored persistently, organized by a defined scope like user ID, and 
intelligently updated to consolidate new data and resolve contradictions. Upon 
starting a new session, the agent retrieves relevant memories through either a full 
data recall or a similarity search using embeddings. This process allows an agent to 
maintain continuity across sessions and personalize responses based on recalled 
information.  

The agent's runner interacts with the VertexAiMemoryBankService, which is initialized 
first. This service handles the automatic storage of memories generated during the 
agent's conversations. Each memory is tagged with a unique USER_ID and APP_NAME, 
ensuring accurate retrieval in the future. 

from google.adk.memory import VertexAiMemoryBankService 
 
agent_engine_id = agent_engine.api_resource.name.split("/")[-1] 
 
memory_service = VertexAiMemoryBankService( 
   project="PROJECT_ID", 
   location="LOCATION", 
   agent_engine_id=agent_engine_id 
) 
 
session = await session_service.get_session( 
   app_name=app_name, 
   user_id="USER_ID", 
   session_id=session.id 
) 
await memory_service.add_session_to_memory(session) 
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Memory Bank offers seamless integration with the Google ADK, providing an 
immediate out-of-the-box experience. For users of other agent frameworks, such as 
LangGraph and CrewAI, Memory Bank also offers support through direct API calls. 
Online code examples demonstrating these integrations are readily available for 
interested readers. 

At a Glance 
What: Agentic systems need to remember information from past interactions to 
perform complex tasks and provide coherent experiences. Without a memory 
mechanism, agents are stateless, unable to maintain conversational context, learn 
from experience, or personalize responses for users. This fundamentally limits them to 
simple, one-shot interactions, failing to handle multi-step processes or evolving user 
needs. The core problem is how to effectively manage both the immediate, temporary 
information of a single conversation and the vast, persistent knowledge gathered over 
time. 

Why: The standardized solution is to implement a dual-component memory system 
that distinguishes between short-term and long-term storage. Short-term, contextual 
memory holds recent interaction data within the LLM's context window to maintain 
conversational flow. For information that must persist, long-term memory solutions 
use external databases, often vector stores, for efficient, semantic retrieval. Agentic 
frameworks like the Google ADK provide specific components to manage this, such as 
Session for the conversation thread and State for its temporary data. A dedicated 
MemoryService is used to interface with the long-term knowledge base, allowing the 
agent to retrieve and incorporate relevant past information into its current context. 

Rule of thumb: Use this pattern when an agent needs to do more than answer a 
single question. It is essential for agents that must maintain context throughout a 
conversation, track progress in multi-step tasks, or personalize interactions by 
recalling user preferences and history. Implement memory management whenever the 
agent is expected to learn or adapt based on past successes, failures, or newly 
acquired information. 

Visual summary 
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Fig.1: Memory management design pattern 

 

Key Takeaways 
To quickly recap the main points about memory management: 

●​ Memory is super important for agents to keep track of things, learn, and 
personalize interactions. 

●​ Conversational AI relies on both short-term memory for immediate context within 
a single chat and long-term memory for persistent knowledge across multiple 
sessions. 

●​ Short-term memory (the immediate stuff) is temporary, often limited by the LLM's 
context window or how the framework passes context. 

●​ Long-term memory (the stuff that sticks around) saves info across different chats 
using outside storage like vector databases and is accessed by searching. 
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●​ Frameworks like ADK have specific parts like Session (the chat thread), State 
(temporary chat data), and MemoryService (the searchable long-term 
knowledge) to manage memory. 

●​ ADK's SessionService handles the whole life of a chat session, including its 
history (events) and temporary data (state). 

●​ ADK's session.state is a dictionary for temporary chat data. Prefixes (user:, app:, 
temp:) tell you where the data belongs and if it sticks around. 

●​ In ADK, you should update state by using EventActions.state_delta or output_key 
when adding events, not by changing the state dictionary directly. 

●​ ADK's MemoryService is for putting info into long-term storage and letting agents 
search it, often using tools. 

●​ LangChain offers practical tools like ConversationBufferMemory to automatically 
inject the history of a single conversation into a prompt, enabling an agent to 
recall immediate context. 

●​ LangGraph enables advanced, long-term memory by using a store to save and 
retrieve semantic facts, episodic experiences, or even updatable procedural rules 
across different user sessions. 

●​ Memory Bank is a managed service that provides agents with persistent, 
long-term memory by automatically extracting, storing, and recalling 
user-specific information to enable personalized, continuous conversations 
across frameworks like Google's ADK, LangGraph, and CrewAI. 

 

Conclusion 
This chapter dove into the really important job of memory management for agent 
systems, showing the difference between the short-lived context and the knowledge 
that sticks around for a long time. We talked about how these types of memory are 
set up and where you see them used in building smarter agents that can remember 
things. We took a detailed look at how Google ADK gives you specific pieces like 
Session, State, and MemoryService to handle this. Now that we've covered how 
agents can remember things, both short-term and long-term, we can move on to how 
they can learn and adapt. The next pattern ​​"Learning and Adaptation" is about an 
agent changing how it thinks, acts, or what it knows, all based on new experiences or 
data.  
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