
Chapter 8: Memory Management
Effective memory management is crucial for intelligent agents to retain information.
Agents require different types of memory, much like humans, to operate efficiently.
This chapter delves into memory management, specifically addressing the immediate
(short-term) and persistent (long-term) memory requirements of agents.

In agent systems, memory refers to an agent's ability to retain and utilize information
from past interactions, observations, and learning experiences. This capability allows
agents to make informed decisions, maintain conversational context, and improve over
time. Agent memory is generally categorized into two main types:

●​ Short-Term Memory (Contextual Memory): Similar to working memory, this
holds information currently being processed or recently accessed. For agents
using large language models (LLMs), short-term memory primarily exists within
the context window. This window contains recent messages, agent replies, tool
usage results, and agent reflections from the current interaction, all of which
inform the LLM's subsequent responses and actions. The context window has a
limited capacity, restricting the amount of recent information an agent can
directly access. Efficient short-term memory management involves keeping the
most relevant information within this limited space, possibly through
techniques like summarizing older conversation segments or emphasizing key
details. The advent of models with 'long context' windows simply expands the
size of this short-term memory, allowing more information to be held within a
single interaction. However, this context is still ephemeral and is lost once the
session concludes, and it can be costly and inefficient to process every time.
Consequently, agents require separate memory types to achieve true
persistence, recall information from past interactions, and build a lasting
knowledge base.

●​ Long-Term Memory (Persistent Memory): This acts as a repository for
information agents need to retain across various interactions, tasks, or
extended periods, akin to long-term knowledge bases. Data is typically stored
outside the agent's immediate processing environment, often in databases,
knowledge graphs, or vector databases. In vector databases, information is
converted into numerical vectors and stored, enabling agents to retrieve data
based on semantic similarity rather than exact keyword matches, a process
known as semantic search. When an agent needs information from long-term
memory, it queries the external storage, retrieves relevant data, and integrates
it into the short-term context for immediate use, thus combining prior

1

knowledge with the current interaction.

Practical Applications & Use Cases
Memory management is vital for agents to track information and perform intelligently
over time. This is essential for agents to surpass basic question-answering
capabilities. Applications include:

●​ Chatbots and Conversational AI: Maintaining conversation flow relies on
short-term memory. Chatbots require remembering prior user inputs to provide
coherent responses. Long-term memory enables chatbots to recall user
preferences, past issues, or prior discussions, offering personalized and
continuous interactions.

●​ Task-Oriented Agents: Agents managing multi-step tasks need short-term
memory to track previous steps, current progress, and overall goals. This
information might reside in the task's context or temporary storage. Long-term
memory is crucial for accessing specific user-related data not in the immediate
context.

●​ Personalized Experiences: Agents offering tailored interactions utilize
long-term memory to store and retrieve user preferences, past behaviors, and
personal information. This allows agents to adapt their responses and
suggestions.

●​ Learning and Improvement: Agents can refine their performance by learning
from past interactions. Successful strategies, mistakes, and new information
are stored in long-term memory, facilitating future adaptations. Reinforcement
learning agents store learned strategies or knowledge in this way.

●​ Information Retrieval (RAG): Agents designed for answering questions
access a knowledge base, their long-term memory, often implemented within
Retrieval Augmented Generation (RAG). The agent retrieves relevant
documents or data to inform its responses.

●​ Autonomous Systems: Robots or self-driving cars require memory for maps,
routes, object locations, and learned behaviors. This involves short-term
memory for immediate surroundings and long-term memory for general
environmental knowledge.

Memory enables agents to maintain history, learn, personalize interactions, and
manage complex, time-dependent problems.

2

Hands-On Code: Memory Management in Google
Agent Developer Kit (ADK)
The Google Agent Developer Kit (ADK) offers a structured method for managing
context and memory, including components for practical application. A solid grasp of
ADK's Session, State, and Memory is vital for building agents that need to retain
information.

Just as in human interactions, agents require the ability to recall previous exchanges
to conduct coherent and natural conversations. ADK simplifies context management
through three core concepts and their associated services.

Every interaction with an agent can be considered a unique conversation thread.
Agents might need to access data from earlier interactions. ADK structures this as
follows:

●​ Session: An individual chat thread that logs messages and actions (Events) for
that specific interaction, also storing temporary data (State) relevant to that
conversation.

●​ State (session.state): Data stored within a Session, containing information
relevant only to the current, active chat thread.

●​ Memory: A searchable repository of information sourced from various past
chats or external sources, serving as a resource for data retrieval beyond the
immediate conversation.

ADK provides dedicated services for managing critical components essential for
building complex, stateful, and context-aware agents. The SessionService manages
chat threads (Session objects) by handling their initiation, recording, and termination,
while the MemoryService oversees the storage and retrieval of long-term knowledge
(Memory).

Both the SessionService and MemoryService offer various configuration options,
allowing users to choose storage methods based on application needs. In-memory
options are available for testing purposes, though data will not persist across restarts.
For persistent storage and scalability, ADK also supports database and cloud-based
services.

3

Session: Keeping Track of Each Chat
A Session object in ADK is designed to track and manage individual chat threads.
Upon initiation of a conversation with an agent, the SessionService generates a
Session object, represented as `google.adk.sessions.Session`. This object
encapsulates all data relevant to a specific conversation thread, including unique
identifiers (id, app_name, user_id), a chronological record of events as Event objects,
a storage area for session-specific temporary data known as state, and a timestamp
indicating the last update (last_update_time). Developers typically interact with
Session objects indirectly through the SessionService. The SessionService is
responsible for managing the lifecycle of conversation sessions, which includes
initiating new sessions, resuming previous sessions, recording session activity
(including state updates), identifying active sessions, and managing the removal of
session data. The ADK provides several SessionService implementations with varying
storage mechanisms for session history and temporary data, such as the
InMemorySessionService, which is suitable for testing but does not provide data
persistence across application restarts.

Example: Using InMemorySessionService
This is suitable for local development and testing where data
persistence across application restarts is not required.
from google.adk.sessions import InMemorySessionService
session_service = InMemorySessionService()

Then there's DatabaseSessionService if you want reliable saving to a database you
manage.

Example: Using DatabaseSessionService
This is suitable for production or development requiring persistent
storage.
You need to configure a database URL (e.g., for SQLite, PostgreSQL,
etc.).
Requires: pip install google-adk[sqlalchemy] and a database driver
(e.g., psycopg2 for PostgreSQL)
from google.adk.sessions import DatabaseSessionService
Example using a local SQLite file:
db_url = "sqlite:///./my_agent_data.db"
session_service = DatabaseSessionService(db_url=db_url)

4

Besides, there's VertexAiSessionService which uses Vertex AI infrastructure for
scalable production on Google Cloud.

Example: Using VertexAiSessionService
This is suitable for scalable production on Google Cloud Platform,
leveraging
Vertex AI infrastructure for session management.
Requires: pip install google-adk[vertexai] and GCP
setup/authentication
from google.adk.sessions import VertexAiSessionService

PROJECT_ID = "your-gcp-project-id" # Replace with your GCP project ID
LOCATION = "us-central1" # Replace with your desired GCP location
The app_name used with this service should correspond to the
Reasoning Engine ID or name
REASONING_ENGINE_APP_NAME =
"projects/your-gcp-project-id/locations/us-central1/reasoningEngines/
your-engine-id" # Replace with your Reasoning Engine resource name

session_service = VertexAiSessionService(project=PROJECT_ID,
location=LOCATION)
When using this service, pass REASONING_ENGINE_APP_NAME to service
methods:
session_service.create_session(app_name=REASONING_ENGINE_APP_NAME,
...)
session_service.get_session(app_name=REASONING_ENGINE_APP_NAME,
...)
session_service.append_event(session, event,
app_name=REASONING_ENGINE_APP_NAME)
session_service.delete_session(app_name=REASONING_ENGINE_APP_NAME,
...)

Choosing an appropriate SessionService is crucial as it determines how the agent's
interaction history and temporary data are stored and their persistence.

Each message exchange involves a cyclical process: A message is received, the
Runner retrieves or establishes a Session using the SessionService, the agent
processes the message using the Session's context (state and historical interactions),
the agent generates a response and may update the state, the Runner encapsulates
this as an Event, and the session_service.append_event method records the new

5

event and updates the state in storage. The Session then awaits the next message.
Ideally, the delete_session method is employed to terminate the session when the
interaction concludes. This process illustrates how the SessionService maintains
continuity by managing the Session-specific history and temporary data.

State: The Session's Scratchpad

In the ADK, each Session, representing a chat thread, includes a state component akin
to an agent's temporary working memory for the duration of that specific
conversation. While session.events logs the entire chat history, session.state stores
and updates dynamic data points relevant to the active chat.

Fundamentally, session.state operates as a dictionary, storing data as key-value pairs.
Its core function is to enable the agent to retain and manage details essential for
coherent dialogue, such as user preferences, task progress, incremental data
collection, or conditional flags influencing subsequent agent actions.

The state’s structure comprises string keys paired with values of serializable Python
types, including strings, numbers, booleans, lists, and dictionaries containing these
basic types. State is dynamic, evolving throughout the conversation. The permanence
of these changes depends on the configured SessionService.

State organization can be achieved using key prefixes to define data scope and
persistence. Keys without prefixes are session-specific.

●​ The user: prefix associates data with a user ID across all sessions.
●​ The app: prefix designates data shared among all users of the application.
●​ The temp: prefix indicates data valid only for the current processing turn and is

not persistently stored.

The agent accesses all state data through a single session.state dictionary. The
SessionService handles data retrieval, merging, and persistence. State should be
updated upon adding an Event to the session history via
session_service.append_event(). This ensures accurate tracking, proper saving in
persistent services, and safe handling of state changes.

1.​ The Simple Way: Using output_key (for Agent Text Replies): This is the

easiest method if you just want to save your agent's final text response directly
into the state. When you set up your LlmAgent, just tell it the output_key you want
to use. The Runner sees this and automatically creates the necessary actions to

6

save the response to the state when it appends the event. Let's look at a code
example demonstrating state update via output_key.

Import necessary classes from the Google Agent Developer Kit
(ADK)
from google.adk.agents import LlmAgent
from google.adk.sessions import InMemorySessionService, Session
from google.adk.runners import Runner
from google.genai.types import Content, Part

Define an LlmAgent with an output_key.
greeting_agent = LlmAgent(
 name="Greeter",
 model="gemini-2.0-flash",
 instruction="Generate a short, friendly greeting.",
 output_key="last_greeting"
)

--- Setup Runner and Session ---
app_name, user_id, session_id = "state_app", "user1", "session1"
session_service = InMemorySessionService()
runner = Runner(
 agent=greeting_agent,
 app_name=app_name,
 session_service=session_service
)
session = session_service.create_session(
 app_name=app_name,
 user_id=user_id,
 session_id=session_id
)

print(f"Initial state: {session.state}")

--- Run the Agent ---
user_message = Content(parts=[Part(text="Hello")])
print("\n--- Running the agent ---")
for event in runner.run(
 user_id=user_id,
 session_id=session_id,
 new_message=user_message
):
 if event.is_final_response():
 print("Agent responded.")

--- Check Updated State ---
Correctly check the state *after* the runner has finished

7

processing all events.
updated_session = session_service.get_session(app_name, user_id,
session_id)
print(f"\nState after agent run: {updated_session.state}")

Behind the scenes, the Runner sees your output_key and automatically creates the
necessary actions with a state_delta when it calls append_event.

2.​ The Standard Way: Using EventActions.state_delta (for More Complicated
Updates): For times when you need to do more complex things – like updating
several keys at once, saving things that aren't just text, targeting specific scopes
like user: or app:, or making updates that aren't tied to the agent's final text reply
– you'll manually build a dictionary of your state changes (the state_delta) and
include it within the EventActions of the Event you're appending. Let's look at one
example:

import time
from google.adk.tools.tool_context import ToolContext
from google.adk.sessions import InMemorySessionService

--- Define the Recommended Tool-Based Approach ---
def log_user_login(tool_context: ToolContext) -> dict:
 """
 Updates the session state upon a user login event.
 This tool encapsulates all state changes related to a user
login.
 Args:
 tool_context: Automatically provided by ADK, gives access
to session state.
 Returns:
 A dictionary confirming the action was successful.
 """
 # Access the state directly through the provided context.
 state = tool_context.state

 # Get current values or defaults, then update the state.
 # This is much cleaner and co-locates the logic.
 login_count = state.get("user:login_count", 0) + 1
 state["user:login_count"] = login_count
 state["task_status"] = "active"
 state["user:last_login_ts"] = time.time()
 state["temp:validation_needed"] = True

 print("State updated from within the `log_user_login` tool.")

8

 return {
 "status": "success",
 "message": f"User login tracked. Total logins:
{login_count}."
 }

--- Demonstration of Usage ---
In a real application, an LLM Agent would decide to call this
tool.
Here, we simulate a direct call for demonstration purposes.

1. Setup
session_service = InMemorySessionService()
app_name, user_id, session_id = "state_app_tool", "user3",
"session3"
session = session_service.create_session(
 app_name=app_name,
 user_id=user_id,
 session_id=session_id,
 state={"user:login_count": 0, "task_status": "idle"}
)
print(f"Initial state: {session.state}")

2. Simulate a tool call (in a real app, the ADK Runner does
this)
We create a ToolContext manually just for this standalone
example.
from google.adk.tools.tool_context import InvocationContext
mock_context = ToolContext(
 invocation_context=InvocationContext(
 app_name=app_name, user_id=user_id, session_id=session_id,
 session=session, session_service=session_service
)
)

3. Execute the tool
log_user_login(mock_context)

4. Check the updated state
updated_session = session_service.get_session(app_name, user_id,
session_id)
print(f"State after tool execution: {updated_session.state}")

Expected output will show the same state change as the
"Before" case,
but the code organization is significantly cleaner

9

and more robust.

This code demonstrates a tool-based approach for managing user session state in an
application. It defines a function log_user_login, which acts as a tool. This tool is
responsible for updating the session state when a user logs in.
The function takes a ToolContext object, provided by the ADK, to access and modify
the session's state dictionary. Inside the tool, it increments a user:login_count, sets
the task_status to "active", records the user:last_login_ts (timestamp), and adds a
temporary flag temp:validation_needed.

The demonstration part of the code simulates how this tool would be used. It sets up
an in-memory session service and creates an initial session with some predefined
state. A ToolContext is then manually created to mimic the environment in which the
ADK Runner would execute the tool. The log_user_login function is called with this
mock context. Finally, the code retrieves the session again to show that the state has
been updated by the tool's execution. The goal is to show how encapsulating state
changes within tools makes the code cleaner and more organized compared to
directly manipulating state outside of tools.

Note that direct modification of the `session.state` dictionary after retrieving a
session is strongly discouraged as it bypasses the standard event processing
mechanism. Such direct changes will not be recorded in the session's event history,
may not be persisted by the selected `SessionService`, could lead to concurrency
issues, and will not update essential metadata such as timestamps. The
recommended methods for updating the session state are using the `output_key`
parameter on an `LlmAgent` (specifically for the agent's final text responses) or
including state changes within `EventActions.state_delta` when appending an event
via `session_service.append_event()`. The `session.state` should primarily be used for
reading existing data.

To recap, when designing your state, keep it simple, use basic data types, give your
keys clear names and use prefixes correctly, avoid deep nesting, and always update
state using the append_event process.

Memory: Long-Term Knowledge with MemoryService

In agent systems, the Session component maintains a record of the current chat
history (events) and temporary data (state) specific to a single conversation. However,

10

for agents to retain information across multiple interactions or access external data,
long-term knowledge management is necessary. This is facilitated by the
MemoryService.

Example: Using InMemoryMemoryService
This is suitable for local development and testing where data
persistence across application restarts is not required.
Memory content is lost when the app stops.
from google.adk.memory import InMemoryMemoryService
memory_service = InMemoryMemoryService()

Session and State can be conceptualized as short-term memory for a single chat
session, whereas the Long-Term Knowledge managed by the MemoryService
functions as a persistent and searchable repository. This repository may contain
information from multiple past interactions or external sources. The MemoryService,
as defined by the BaseMemoryService interface, establishes a standard for managing
this searchable, long-term knowledge. Its primary functions include adding
information, which involves extracting content from a session and storing it using the
add_session_to_memory method, and retrieving information, which allows an agent to
query the store and receive relevant data using the search_memory method.

The ADK offers several implementations for creating this long-term knowledge store.
The InMemoryMemoryService provides a temporary storage solution suitable for
testing purposes, but data is not preserved across application restarts. For production
environments, the VertexAiRagMemoryService is typically utilized. This service
leverages Google Cloud's Retrieval Augmented Generation (RAG) service, enabling
scalable, persistent, and semantic search capabilities (Also, refer to the chapter 14 on
RAG).

Example: Using VertexAiRagMemoryService
This is suitable for scalable production on GCP, leveraging
Vertex AI RAG (Retrieval Augmented Generation) for persistent,
searchable memory.
Requires: pip install google-adk[vertexai], GCP
setup/authentication, and a Vertex AI RAG Corpus.
from google.adk.memory import VertexAiRagMemoryService

The resource name of your Vertex AI RAG Corpus
RAG_CORPUS_RESOURCE_NAME =
"projects/your-gcp-project-id/locations/us-central1/ragCorpora/your-c
orpus-id" # Replace with your Corpus resource name

11

Optional configuration for retrieval behavior
SIMILARITY_TOP_K = 5 # Number of top results to retrieve
VECTOR_DISTANCE_THRESHOLD = 0.7 # Threshold for vector similarity

memory_service = VertexAiRagMemoryService(
 rag_corpus=RAG_CORPUS_RESOURCE_NAME,
 similarity_top_k=SIMILARITY_TOP_K,
 vector_distance_threshold=VECTOR_DISTANCE_THRESHOLD
)
When using this service, methods like add_session_to_memory
and search_memory will interact with the specified Vertex AI
RAG Corpus.

Hands-on code: Memory Management in LangChain
and LangGraph
In LangChain and LangGraph, Memory is a critical component for creating intelligent
and natural-feeling conversational applications. It allows an AI agent to remember
information from past interactions, learn from feedback, and adapt to user
preferences. LangChain's memory feature provides the foundation for this by
referencing a stored history to enrich current prompts and then recording the latest
exchange for future use. As agents handle more complex tasks, this capability
becomes essential for both efficiency and user satisfaction.

Short-Term Memory: This is thread-scoped, meaning it tracks the ongoing
conversation within a single session or thread. It provides immediate context, but a full
history can challenge an LLM's context window, potentially leading to errors or poor
performance. LangGraph manages short-term memory as part of the agent's state,
which is persisted via a checkpointer, allowing a thread to be resumed at any time.

Long-Term Memory: This stores user-specific or application-level data across
sessions and is shared between conversational threads. It is saved in custom
"namespaces" and can be recalled at any time in any thread. LangGraph provides
stores to save and recall long-term memories, enabling agents to retain knowledge
indefinitely.

LangChain provides several tools for managing conversation history, ranging from
manual control to automated integration within chains.

12

ChatMessageHistory: Manual Memory Management. For direct and simple control
over a conversation's history outside of a formal chain, the ChatMessageHistory class
is ideal. It allows for the manual tracking of dialogue exchanges.

from langchain.memory import ChatMessageHistory

Initialize the history object
history = ChatMessageHistory()

Add user and AI messages
history.add_user_message("I'm heading to New York next week.")
history.add_ai_message("Great! It's a fantastic city.")

Access the list of messages
print(history.messages)

ConversationBufferMemory: Automated Memory for Chains. For integrating
memory directly into chains, ConversationBufferMemory is a common choice. It holds
a buffer of the conversation and makes it available to your prompt. Its behavior can be
customized with two key parameters:

●​ memory_key: A string that specifies the variable name in your prompt that will
hold the chat history. It defaults to "history".

●​ return_messages: A boolean that dictates the format of the history.
○​ If False (the default), it returns a single formatted string, which is ideal

for standard LLMs.
○​ If True, it returns a list of message objects, which is the recommended

format for Chat Models.

from langchain.memory import ConversationBufferMemory

Initialize memory
memory = ConversationBufferMemory()

Save a conversation turn
memory.save_context({"input": "What's the weather like?"}, {"output":
"It's sunny today."})

Load the memory as a string
print(memory.load_memory_variables({}))

13

Integrating this memory into an LLMChain allows the model to access the
conversation's history and provide contextually relevant responses

from langchain_openai import OpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory

1. Define LLM and Prompt
llm = OpenAI(temperature=0)
template = """You are a helpful travel agent.

Previous conversation:
{history}

New question: {question}
Response:"""
prompt = PromptTemplate.from_template(template)

2. Configure Memory
The memory_key "history" matches the variable in the prompt
memory = ConversationBufferMemory(memory_key="history")

3. Build the Chain
conversation = LLMChain(llm=llm, prompt=prompt, memory=memory)

4. Run the Conversation
response = conversation.predict(question="I want to book a flight.")
print(response)
response = conversation.predict(question="My name is Sam, by the
way.")
print(response)
response = conversation.predict(question="What was my name again?")
print(response)

For improved effectiveness with chat models, it is recommended to use a structured
list of message objects by setting `return_messages=True`.

from langchain_openai import ChatOpenAI
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_core.prompts import (
 ChatPromptTemplate,
 MessagesPlaceholder,

14

 SystemMessagePromptTemplate,
 HumanMessagePromptTemplate,
)

1. Define Chat Model and Prompt
llm = ChatOpenAI()
prompt = ChatPromptTemplate(
 messages=[
 SystemMessagePromptTemplate.from_template("You are a friendly
assistant."),
 MessagesPlaceholder(variable_name="chat_history"),
 HumanMessagePromptTemplate.from_template("{question}")
]
)

2. Configure Memory
return_messages=True is essential for chat models
memory = ConversationBufferMemory(memory_key="chat_history",
return_messages=True)

3. Build the Chain
conversation = LLMChain(llm=llm, prompt=prompt, memory=memory)

4. Run the Conversation
response = conversation.predict(question="Hi, I'm Jane.")
print(response)
response = conversation.predict(question="Do you remember my name?")
print(response)

Types of Long-Term Memory: Long-term memory allows systems to retain
information across different conversations, providing a deeper level of context and
personalization. It can be broken down into three types analogous to human memory:

●​ Semantic Memory: Remembering Facts: This involves retaining specific facts
and concepts, such as user preferences or domain knowledge. It is used to
ground an agent's responses, leading to more personalized and relevant
interactions. This information can be managed as a continuously updated user
"profile" (a JSON document) or as a "collection" of individual factual
documents.

●​ Episodic Memory: Remembering Experiences: This involves recalling past
events or actions. For AI agents, episodic memory is often used to remember
how to accomplish a task. In practice, it's frequently implemented through

15

few-shot example prompting, where an agent learns from past successful
interaction sequences to perform tasks correctly.

●​ Procedural Memory: Remembering Rules: This is the memory of how to
perform tasks—the agent's core instructions and behaviors, often contained in
its system prompt. It's common for agents to modify their own prompts to
adapt and improve. An effective technique is "Reflection," where an agent is
prompted with its current instructions and recent interactions, then asked to
refine its own instructions.

Below is pseudo-code demonstrating how an agent might use reflection to update its
procedural memory stored in a LangGraph BaseStore

Node that updates the agent's instructions
def update_instructions(state: State, store: BaseStore):
 namespace = ("instructions",)
 # Get the current instructions from the store
 current_instructions = store.search(namespace)[0]

 # Create a prompt to ask the LLM to reflect on the conversation
 # and generate new, improved instructions
 prompt = prompt_template.format(
 instructions=current_instructions.value["instructions"],
 conversation=state["messages"]
)

 # Get the new instructions from the LLM
 output = llm.invoke(prompt)
 new_instructions = output['new_instructions']

 # Save the updated instructions back to the store
 store.put(("agent_instructions",), "agent_a", {"instructions":
new_instructions})

Node that uses the instructions to generate a response
def call_model(state: State, store: BaseStore):
 namespace = ("agent_instructions",)
 # Retrieve the latest instructions from the store
 instructions = store.get(namespace, key="agent_a")[0]

 # Use the retrieved instructions to format the prompt
 prompt =
prompt_template.format(instructions=instructions.value["instructions"
])
 # ... application logic continues

16

LangGraph stores long-term memories as JSON documents in a store. Each memory
is organized under a custom namespace (like a folder) and a distinct key (like a
filename). This hierarchical structure allows for easy organization and retrieval of
information. The following code demonstrates how to use InMemoryStore to put, get,
and search for memories.

from langgraph.store.memory import InMemoryStore

A placeholder for a real embedding function
def embed(texts: list[str]) -> list[list[float]]:
 # In a real application, use a proper embedding model
 return [[1.0, 2.0] for _ in texts]

Initialize an in-memory store. For production, use a
database-backed store.
store = InMemoryStore(index={"embed": embed, "dims": 2})

Define a namespace for a specific user and application context
user_id = "my-user"
application_context = "chitchat"
namespace = (user_id, application_context)

1. Put a memory into the store
store.put(
 namespace,
 "a-memory", # The key for this memory
 {
 "rules": [
 "User likes short, direct language",
 "User only speaks English & python",
],
 "my-key": "my-value",
 },
)

2. Get the memory by its namespace and key
item = store.get(namespace, "a-memory")
print("Retrieved Item:", item)

3. Search for memories within the namespace, filtering by content
and sorting by vector similarity to the query.
items = store.search(

17

 namespace,
 filter={"my-key": "my-value"},
 query="language preferences"
)
print("Search Results:", items)

Vertex Memory Bank
Memory Bank, a managed service in the Vertex AI Agent Engine, provides agents with
persistent, long-term memory. The service uses Gemini models to asynchronously
analyze conversation histories to extract key facts and user preferences.

This information is stored persistently, organized by a defined scope like user ID, and
intelligently updated to consolidate new data and resolve contradictions. Upon
starting a new session, the agent retrieves relevant memories through either a full
data recall or a similarity search using embeddings. This process allows an agent to
maintain continuity across sessions and personalize responses based on recalled
information.

The agent's runner interacts with the VertexAiMemoryBankService, which is initialized
first. This service handles the automatic storage of memories generated during the
agent's conversations. Each memory is tagged with a unique USER_ID and APP_NAME,
ensuring accurate retrieval in the future.

from google.adk.memory import VertexAiMemoryBankService

agent_engine_id = agent_engine.api_resource.name.split("/")[-1]

memory_service = VertexAiMemoryBankService(
 project="PROJECT_ID",
 location="LOCATION",
 agent_engine_id=agent_engine_id
)

session = await session_service.get_session(
 app_name=app_name,
 user_id="USER_ID",
 session_id=session.id
)
await memory_service.add_session_to_memory(session)

18

Memory Bank offers seamless integration with the Google ADK, providing an
immediate out-of-the-box experience. For users of other agent frameworks, such as
LangGraph and CrewAI, Memory Bank also offers support through direct API calls.
Online code examples demonstrating these integrations are readily available for
interested readers.

At a Glance
What: Agentic systems need to remember information from past interactions to
perform complex tasks and provide coherent experiences. Without a memory
mechanism, agents are stateless, unable to maintain conversational context, learn
from experience, or personalize responses for users. This fundamentally limits them to
simple, one-shot interactions, failing to handle multi-step processes or evolving user
needs. The core problem is how to effectively manage both the immediate, temporary
information of a single conversation and the vast, persistent knowledge gathered over
time.

Why: The standardized solution is to implement a dual-component memory system
that distinguishes between short-term and long-term storage. Short-term, contextual
memory holds recent interaction data within the LLM's context window to maintain
conversational flow. For information that must persist, long-term memory solutions
use external databases, often vector stores, for efficient, semantic retrieval. Agentic
frameworks like the Google ADK provide specific components to manage this, such as
Session for the conversation thread and State for its temporary data. A dedicated
MemoryService is used to interface with the long-term knowledge base, allowing the
agent to retrieve and incorporate relevant past information into its current context.

Rule of thumb: Use this pattern when an agent needs to do more than answer a
single question. It is essential for agents that must maintain context throughout a
conversation, track progress in multi-step tasks, or personalize interactions by
recalling user preferences and history. Implement memory management whenever the
agent is expected to learn or adapt based on past successes, failures, or newly
acquired information.

Visual summary

19

Fig.1: Memory management design pattern

Key Takeaways
To quickly recap the main points about memory management:

●​ Memory is super important for agents to keep track of things, learn, and
personalize interactions.

●​ Conversational AI relies on both short-term memory for immediate context within
a single chat and long-term memory for persistent knowledge across multiple
sessions.

●​ Short-term memory (the immediate stuff) is temporary, often limited by the LLM's
context window or how the framework passes context.

●​ Long-term memory (the stuff that sticks around) saves info across different chats
using outside storage like vector databases and is accessed by searching.

20

●​ Frameworks like ADK have specific parts like Session (the chat thread), State
(temporary chat data), and MemoryService (the searchable long-term
knowledge) to manage memory.

●​ ADK's SessionService handles the whole life of a chat session, including its
history (events) and temporary data (state).

●​ ADK's session.state is a dictionary for temporary chat data. Prefixes (user:, app:,
temp:) tell you where the data belongs and if it sticks around.

●​ In ADK, you should update state by using EventActions.state_delta or output_key
when adding events, not by changing the state dictionary directly.

●​ ADK's MemoryService is for putting info into long-term storage and letting agents
search it, often using tools.

●​ LangChain offers practical tools like ConversationBufferMemory to automatically
inject the history of a single conversation into a prompt, enabling an agent to
recall immediate context.

●​ LangGraph enables advanced, long-term memory by using a store to save and
retrieve semantic facts, episodic experiences, or even updatable procedural rules
across different user sessions.

●​ Memory Bank is a managed service that provides agents with persistent,
long-term memory by automatically extracting, storing, and recalling
user-specific information to enable personalized, continuous conversations
across frameworks like Google's ADK, LangGraph, and CrewAI.

Conclusion
This chapter dove into the really important job of memory management for agent
systems, showing the difference between the short-lived context and the knowledge
that sticks around for a long time. We talked about how these types of memory are
set up and where you see them used in building smarter agents that can remember
things. We took a detailed look at how Google ADK gives you specific pieces like
Session, State, and MemoryService to handle this. Now that we've covered how
agents can remember things, both short-term and long-term, we can move on to how
they can learn and adapt. The next pattern ​​"Learning and Adaptation" is about an
agent changing how it thinks, acts, or what it knows, all based on new experiences or
data.

References
1.​ ADK Memory, https://google.github.io/adk-docs/sessions/memory/

21

https://google.github.io/adk-docs/sessions/memory/

2.​ LangGraph Memory,
https://langchain-ai.github.io/langgraph/concepts/memory/

3.​ Vertex AI Agent Engine Memory Bank,
https://cloud.google.com/blog/products/ai-machine-learning/vertex-ai-memory
-bank-in-public-preview

22

https://langchain-ai.github.io/langgraph/concepts/memory/
https://cloud.google.com/blog/products/ai-machine-learning/vertex-ai-memory-bank-in-public-preview
https://cloud.google.com/blog/products/ai-machine-learning/vertex-ai-memory-bank-in-public-preview

	Chapter 8: Memory Management
	Practical Applications & Use Cases
	Hands-On Code: Memory Management in Google Agent Developer Kit (ADK)
	Session: Keeping Track of Each Chat
	State: The Session's Scratchpad
	Memory: Long-Term Knowledge with MemoryService

	Hands-on code: Memory Management in LangChain and LangGraph
	Vertex Memory Bank
	At a Glance
	Key Takeaways
	Conclusion
	References

