Фотобиореактор для культивации микроводорослей

Предназначен для культивации микроводорослей.

Состоит из следующих систем:

- Корпус
- Рама
- Система циркуляции среды
- Система подачи среды
- Система регулирования кислотности среды
- Система измерения оптической плотности среды
- Система обеспечения температурного режима среды
- Система подачи газа
- Система управления газовым составом на входе
- Система измерения газового состава на выходе
- Система очистки полости реактора
- Система освещения
- Система управления
- Блок питания

Примерный состав систем приведен в таблице.

Пневмогидросхема реактора приведена здесь.

Конструктивно системы изделия должны представлять собой автономные блоки, связанные механическими, электрическими и информационными соединениями.

Система управления, датчики и исполнительные органы систем должны

- предоставлять информацию о наступлении пределов регулирования с помощью датчиков положения исполнительных органов или концевых выключателей,
- получать информацию о положении исполнительных органов после снятия питания и его последующего восстановления, в том числе, и после ручного перемещения исполнительных органов при выключенном питании системы.

Подстыковка и расстыковка разъемных соединений между системами и гермокорпусом должна производиться путем относительного перемещения систем и гермокорпуса.

Допустимые материалы фотобиоректора:

- оргстекло,
- фторопласт,
- алюминиевые сплавы,
- нержавеющая сталь.

Климатическое исполнение - В4 по ГОСТ 15150-69.

Вход реактора:

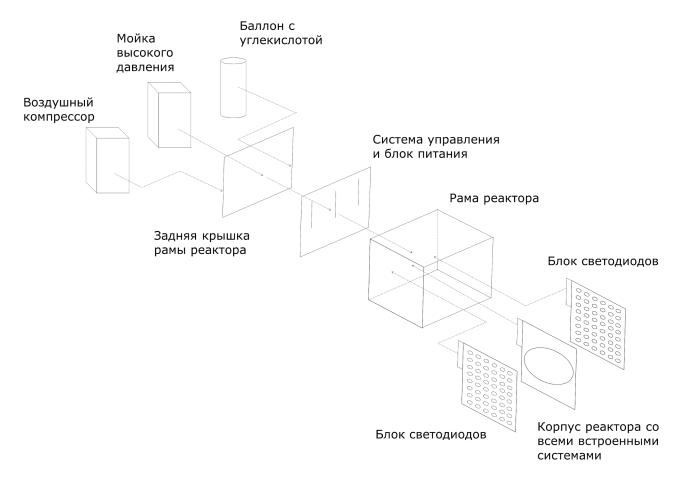
- атмосферный воздух
- углекислый газ
- кислота для регулирования кислотности среды
- щелочь для регулирования кислотности среды
- питание 220 В, до 10 А
- питательная среда

• культура микроводорослей

Выход реактора:

- воздух, обогащенный кислородом,
- питательная среда, обогащенная культурой микроводоросли.

Расходные материалы:


- питательная среда
- культура микроводоросли
- углекислый газ для регулирования газового состава
- кислота для регулирования кислотности среды
- щелочь для регулирования кислотности среды

Примерная циклограмма работы

- 1. Включение реактора
 - а. Оператор подает питание на систему управления.
 - b. Система управления проверяет положение клапанов всех систем и уровни запасов расходуемых материалов в системах.
 - с. Система управления формирует для оператора признаки достаточности или недостаточности запасов расходуемых материалов в системах.
 - d. Система управления переводит клапаны всех систем в положение культивации.
- 2. Пуск реактора
 - а. Оператор при необходимости пополняет запасы расходуемых материалов в системах.
 - b. Оператор через обратный клапан подачи среды заполняет корпус реактора питательной средой.
 - с. Оператор через обратный клапан подачи среды помещает в корпус реактора культуру хлореллы, извлеченную из холодильника и выдержанную сутки при комнатной температуре.
 - d. Оператор дает сигнал "Пуск" системе управления реактора.
 - е. Система управления переводит все системы реактора в рабочий режим.
 - f. Реактор осуществляет культивацию хлореллы в накопительном режиме.
- 3. Работа реактора в накопительном режиме
 - а. Система управления по сигналу от системы измерения оптической плотности среды о достижении заданной концентрации хлореллы переводит систему циркуляции среды из режима циркуляции в режим слива продукта.
 - b. Заданный объем среды с хлореллой сливается из реактора через канал слива продукта.
 - с. Система управления по сигналу от системы подачи среды переводит систему циркуляции среды из режима слива продукта в режим циркуляции.
 - d. Уровень питательной среды в корпусе реактора восполняется системой подачи среды.
- 4. Режим очистки полостей реактора при снижении эффективности культивации
 - а. Снижение эффективности культивации обнаруживается системой управления по уменьшению скорости нарастания оптической плотности относительно номинального значения. Скорость нарастания оптической плотности рассчитывается системой измерения оптической плотности среды.
 - b. Система управления переводит систему циркуляции среды из режима циркуляции в режим слива продукта.
 - с. По окончания слива продукта включается система очистки полости реактора, подающая струи воды под давлением в полость корпуса реактора.
 - d. По окончании очистки система управления переводит систему циркуляции среды из слива продукта в режим циркуляции.
 - е. Система управления переводит реактор в режим готовности к началу культивации, п. 1.

- 5. Останов реактора
 - а. Оператор дает сигнал "Останов" системе управления реактора.
 - b. Система управления переводит все системы в режим остановки, при котором прекращается их работа, клапаны переводятся в состояние, исключающее утечки из корпуса реактора при его демонтаже.
- 6. Выключение реактора
 - а. Оператор снимает питание с реактора.

Эскиз внешнего вида реактора

Опыт эксплуатации первого прототипа реактора

- 1. Затруднен доступ к подсистемам. Все спрятано внутри "корпуса", любой монтаж-демонтаж предполагает полную разборку реактора с отключением-расстыковкой разъемов-шлангов.
- 2. Расположение трубок подвода воздуха и система циркуляции не обеспечивают отсутствие застойных зон, как следствие хлорелла выпадает в осадок.
- 3. Светодиоды находились внутри колбы с хлореллой и зарастали, что приводило к снижению их эффективности.

Корпус

Предназначен для удержания среды внутри реактора, подачи газа и размещения датчиков и исполнительных органов систем реактора.

Основной гермообъем корпуса должен представлять собой цилиндр высотой 10 мм и диаметром 356 мм, обеспечивающим объем полости 1л. Как минимум с одно основание цилиндра требуется выполнить прозрачным для обеспечения ввода излучения в полость корпуса.

Кроме основного объема, корпус должен включать в свой состав полости для размещения всех остальных систем реактора.

Корпус с основным объемом должен представлять собой плоскую пластину, вводы и вывод среды и газа в которую осуществляются только через торцы.

Конструктивно реактор должен состоять из корпуса и крышки, с расположенными между ними герметизирующими прокладками. Крышка и корпус должны быть соединены разъемным соединением. Кроме того, в корпусе должен располагаться обратный клапан для подачи культуры микроводоросли в полость реактора.

Объем: 1 литр.

Рабочее давление: 4 атм.

Пробное давление: 6 атм.

Рама

Предназначена для размещения корпуса и других систем реактора, также для обеспечения требуемого положения реактора относительно опорной поверхности и вектора силы тяжести.

Должна состоять из следующих элементов:

- общий каркас рамы
- выдвижной каркас систем реактора

На общем каркасе рамы в отдельных ложементах должны располагаться:

- гермокорпус реактора
- выдвижной каркас со всеми остальными системами реактора

Выдвижной каркас должен представлять собой пластину с размещенными на ней системами реактора за исключением элементов, габариты которых не `позволяют разместить их на пластине, например, моечной машины или воздушного компрессора.

Корпус реактора и выдвижной каркас должны располагаться в ложементах вертикально, при этом извлечение их должно производиться движением в горизонтальном направлении.

Рама должна быть снабжена колесами, обеспечивающими ее перемещение по горизонтальной поверхности.

Элементы реактора, размещенные вне выдвижного каркаса, должны быть размещены на раме снаружи и перемещаться вместе с ней.

Система подачи среды

Предназначена для заполнения полостей реактора средой и поддержания заданного уровня заполнения.

Система должна состоять из следующих компонентов:

- емкость хранения среды
- обратный клапан для подачи среды в емкость хранения
- привод подачи среды
- поршень привода подачи
- контроллер привода
- трехпозиционный клапан
- привод клапана
- контроллер привода клапана
- датчик уровня среды в реакторе

Объем хранимой среды должен составлять не менее 0,5 л.

Подача среды из емкости хранения в полость реактора должна производиться путем выдавливания среды из емкости хранения методом вытеснения

Заправка емкости должна производиться путем обратного хода поршня, при этом среда должна засасываться в емкость хранения из подстыкованной к обратному клапану внешней емкости или трубопровода.

Система должна быть оборудована трехпозиционным клапаном, обеспечивающим:

- в первом положении подачу среды в полость реактора и перекрывающего каналы заправки,
- во втором положении обеспечивающим заправку и перекрывающим каналы подачи среды в полость реактора,
- в третьем положении обеспечивающим перекрытие как каналов заправки, так и подачи.

Скорость подачи среды в полость реактора, она же скорость заправки, должна составлять не менее 10 мл/с.

Номинальное напряжение питания системы должно быть 12 B, ток не более XXX A.

Система измерения оптической плотности среды

Предназначена для измерения оптической плотности среды и определения плотности микроводорослей.

Система должна состоять из следующих компонентов:

• датчик оптической плотности

Номинальное напряжение питания системы должно быть 12 B, ток не более XXX A.

Система подачи газа

Предназначена для заполнения полостей реактора газом, атмосферным воздухом, обогащенным углекислым газом, и для удаления газа, прошедшего через реактор, при минимизации потерь среды на испарение.

Система должна состоять из следующих компонентов:

- воздушный компрессор
- контроллер компрессора

Воздушный компрессор должен обеспечивать:

- расход газа не менее XXX м3/сек,
- напор не менее XXX м.

Номинальное напряжение питания системы должно быть 12 B, ток не более XXX A.

Система измерения газового состава на выходе

Предназначена для измерения содержания кислорода и углекислоты в газе, выходящем из реактора.

Система должна состоять из следующих компонентов:

- датчик кислорода
- датчик углекислоты
- обратный двухпозиционный клапан газа
- привод клапана газа
- контроллер привода клапана газа

Диапазон измерений уровня кислорода должен составлять от 0 до 100% с относительной погрешностью измерения не более 1%.

Диапазон измерений уровня углекислоты должен составлять от 0 до 5% с относительной погрешностью измерения не более 0,1%.

Двухпозиционный клапан газа должен иметь два положения:

- в первом газ поступает из полости реактора,
- во втором канал выхода газа герметично перекрыт.

Номинальное напряжение питания системы должно быть 12 B, ток не более XXX A.

Система управления

Предназначена для измерения состояния всех остальных систем реактора, управления всеми остальными системами реактора по заданной программе, записи информации о работе всех систем реактора на встроенный накопитель и выдачи этой информации по Bluetooth на внешнее устройство.

Система должна состоять из следующих компонентов:

- набор Arduino
- кабели
- bluetooth-модуль

Система должна обеспечивать:

- коммутацию не менее 20 нагрузок постоянного и переменного тока с мощностью в каждой нагрузке до 1 кВт,
- коммутацию одной нагрузки переменного тока мощностью до 3 кВт,
- опрос не менее 50 датчиков в цифровой и аналоговой форме.

Емкость встроенного запоминающего устройства должна составлять не менее 1 Гб.

Система должна иметь встроенный таймер, автоматически синхронизирующийся с внешним источником точного времени.

Номинальное напряжение питания системы должно быть 12 B, ток не более XXX A.

Система очистки полости реактора

Предназначена для очистки полости реактора струей воды под давлением.

Система должна обеспечивать подачу воды на внутренние поверхности реактора с целью очистки полостей реактора от органических и неорганических загрязнений. Для удаление воды, после промывки реактора, должен быть предусмотрен канал слива.

Система должна состоять из следующих компонентов:

- моечная машина
- контроллер моечной машины
- арматура к моечной машине

Номинальное напряжение питания системы должно быть 12 B, ток не более XXX A.

Система циркуляции среды

Предназначена для перемешивания среды в полости реактора и слива продукта из реактора.

Система должна состоять из следующих компонентов:

- электропривод
- контроллер электропривода
- рабочее колесо насоса
- клапан циркуляционного канала
- привод клапана
- контролер привода

В качестве затворов в системе необходимо использовать двумерный аналог шарового затвора.

Клапан циркуляционного канала должен иметь три положения:

- в первом обеспечивается циркуляция среды внутри реактора,
- во втором обеспечивается слив продукта из реактора,
- в третьем канал циркуляции и канал слива продукта должны быть герметично перекрыты.

Расход системы должен составлять не менее XXX м3/с.

Номинальное напряжение питания системы должно быть 12 B, ток не более XXX A.

Система регулирования кислотности среды

Предназначена для измерения уровня рН среды и поддержания его на заданном уровне.

Система должна состоять из следующих компонентов:

- датчик уровня рН
- емкость хранения кислоты
- обратный клапан для подачи кислоты в емкость хранения
- привод подачи кислоты
- поршень привода подачи кислоты
- контроллер привода подачи кислоты
- трехпозиционный клапан кислоты
- привод клапана кислоты
- контроллер привода клапана кислоты
- емкость хранения щелочи
- обратный клапан для подачи щелочи в емкость хранения
- привод подачи щелочи
- поршень привода подачи щелочи
- контроллер привода подачи щелочи
- трехпозиционный клапан щелочи
- привод клапана щелочи
- контроллер привода клапана щелочи

Емкости хранения кислоты и щелочи должны иметь объем до 100 мл.

Скорость подачи и заправки кислоты и щелочи должны быть не менее 1 мл/с.

Остальные требования к данной системе аналогичны требованиям к системе подачи среды.

Номинальное напряжение питания системы должно быть 12 B, ток не более XXX A.

Система обеспечения температурного режима среды

Предназначена для измерения температуры среды и поддержания ее на заданном уровне.

Система должна состоять из следующих компонентов:

- датчик температуры среды
- вентиляторы
- контроллер вентиляторов

Диапазон измерения температуры от 0° С до 100° С, абсолютная погрешность измерений - не менее $\pm 0,06^{\circ}$ С.

Система должна поддерживать температуру системы в диапазоне от 27° С до 45° С. Точность поддержания температуры должна быть не менее $\pm 0.1^{\circ}$ С.

Номинальное напряжение питания системы должно быть 12 B, ток не более XXX A.

Система управления газовым составом на входе

Предназначена для измерения содержания кислорода и углекислоты в газе, попадающем на вход реактора, и поддержания требуемого уровня углекислоты.

Система должна состоять из следующих компонентов:

- датчик кислорода
- датчик углекислоты
- баллон с углекислотой
- редуктор баллона
- привод редуктора
- контроллер привода редуктора
- обратный клапан газа

Диапазон измерений уровня кислорода должен составлять от 0 до 100% с относительной погрешностью измерения не более 1%.

Диапазон измерений уровня углекислоты должен составлять от 0 до 5% с относительной погрешностью измерения не более 0,1%.

Запас углекислоты в системе должен составлять не менее 20 л.

Номинальное напряжение питания системы должно быть 12 B, ток не более XXX A.

Система освещения

Предназначена для освещения культуры микроводорослей потоком излучения.

Система должна состоять из следующих компонентов:

- источники излучения
- контроллер

Спектр излучения блока светодиодов должен представлять собой XXX.

Плотность потока излучения должна составлять не менее XXX Вт/м2.

Номинальное напряжение питания системы должно быть 12 B, ток не более XXX A.

Блок питания

Предназначена для обеспечения электропитания всех систем.

Система должна состоять из следующих компонентов:

- блок питания
- кабели

Входное номинальное напряжение питания системы должно быть 220 B, $50 \text{ }\Gamma\text{ц}$, ток не более XXX A.

Выходные напряжения системы:

- 18 каналов на 12 В, ток не более XXX А,
- 2 канала на 220 B, 50 Гц, ток не более XXX A.