
Title: Public sun.misc.Unsafe Replacement API
Author: Peter Lawrey, Christoph Engelbert
Organization: Higher Frequency Trading Ltd (UK), Hazelcast, Inc.
Owner: Peter Lawrey
Created: 2014/01/21
Type: Feature
State: Draft
Exposure: Open
Component: core/libs
Scope: SE
JSR: TBD
Discussion: core-libs-dev@openjdk.java.net
Start: 2014/Q2
Depends: 193
Blocks:
Effort: M (less than 6 months but more than 3 months)
Duration: L (less than 1 year but more than 6 months)
Template: 1.0
Internal-refs:
Reviewed-by:
Endorsed-by:
Funded-by: Higher Frequency Trading Ltd, Christoph Engelbert

Summary

This JEP is about to create a public API replacements for sun.misc.Unsafe to
prevent people from accessing a private package in form of a direct memory kind
of buffer and a support class for other sun.misc.Unsafe operations
independently from buffer like memory operations.
Additionally it is about to add small (maybe optional) things like bounding
checks to different kinds of methods for compliance to other Java features and
meet programmers expectations on public Java APIs.

Goals

 - Remove the need for direct access to internal classes on commonly used
features
 - Standardization of the resulting API as part of the JCP process into a JSR
(target Java 9)
 - Meeting security and programmers expectations on using off heap allocations

Non-Goals

No support for deprecated methods, nor sun.misc.Unsafe methods not already
implemented. Also features that are already available in the Java API are not
taken into account like monitorEnter or monitorExit which are supported through
java.util.concurrent.locks.LockSupport.

Success Metrics

Proving a clean supported API that is capable of solving the same problems
sun.misc.Unsafe is normally used for.
It needs to be a mostly full replacement for the direct access of
sun.misc.Unsafe but is not meant to be seen as a drop-in replacement so API is
about to change and security considerations are taken into account.

Motivation

sun.misc.Unsafe is currently the only means of building large, thread safe off
heap and lock-free data structures. This is useful for minimizing GC and memory
fence overhead, sharing memory between processes and implementing embedded
databases without having to use C and JNI, which is likely to be slower and
less portable.

Description

Provide a wrapper class for off heap memory and direct memory operations like
java.nio.ByteBuffer but with the following differences / enhancements:
 - 64-bit sizes and offsets
 - Thread safe constructs such as volatile and ordered access, CAS operations
maybe by providing the same access principle as discussed in JEP 193
 - JVM optimized bounds checking, or developer control over bounds checking
 - The ability to reuse a slice of buffer for different records within a
buffer
 - The ability to map an off heap data structure to such a buffer in such a
way that bounds checking is optimized away

Provide a support class for other memory operations supported by
sun.misc.Unsafe:
 - Non Constructor calling object allocations
 - Array / object based operations like arrayBaseOffset, arrayBaseScale,
objectFieldOffset, staticFieldOffset, staticFieldBase, etc.
 - CopyMemory operations, maybe also for objects and not only for arrays
 - Unsafe class defining and ClassLoader injection
 - Get an objects / arrays memory address
 - Retrieving the pagesize, throwing sneaky exception, force class
initialization, etc
 - Explicit fences and adder methods were introduced in Java 8 to
sun.misc.Unsafe

Key functionality to be retained:
 - Support for memory mapped files
 - Support for NIO APIs
 - Support for writes committed to disk

A proposed package name is not meant to be a typical java namespace (like
java.nio.fs) but will live in javax namespace to clearly mark it as a special
purpose API. There are currently many alternatives discussed like for example
javax.native, javax.directio or javax.offheap.

Alternatives

Up to Java 9 direct access to sun.misc.Unsafe is the alternative and is heavily
used in gaming industry, high frequency trading and other businesses.
There is no alternative in Java 9 like using sun.misc.Unsafe directly because
Project Jigsaw eventually will prevent access to the internal packages. This
will break most of the currently in-the-wild applications with a need of high
performance data structures and lock-free implementations and also it will
break a lot of applications through their used libraries (especially most
serialization libraries).

Testing​

Enhancement of the TCK is required to test security access checks and the
general behavior of the implementation.
In addition to that tests for different platforms (ARM32, ARM64, x86, x64, ...)
and different operating systems (Windows, Linux, Solaris, ...) are needed to
make sure the implementation is working in terms of endianess and native code.
Maybe some sun.misc.Unsafe tests can be reused for this.

Risks and Assumptions

The idea is to lower the risks of ungracefully JVM shutdowns by enabling range
and address checks by default and maybe only activating it on purpose by
additions to the Java security system (like new / additional permission
checks).
It still is possible that some of the APIs proposed in this JEP might break a
Java-programmers understanding of Java just as Lambdas did for Java 8.
At worst case the risks sum up to the same as for using sun.misc.Unsafe itself.
It might be possible to bring down the JVM ungracefully by emitting bad memory
pointer or any kind of other unsafe operations.

Dependences​

Currently there is no direct dependency to any other JEP but there might be a
small dependency on JEP 162 in the future due to the modulization of the JRE.

Impact​

Other JDK / JRE components that will have access to sun.misc.Unsafe after
introduction of Jigsaw must not be impacted but may want to change to the new
API afterwards.

Security objections are unchanged to current situation when no
java.lang.SecurityManager is installed in the system that blocks reflective
access to sun.misc.Unsafe. As mentioned above, security is a clearly known
problem for all kinds of sun.misc.Unsafe like APIs and we will have to come up
with a factory implementation and security check to prevent access to this new
API or to give access only to a subset.

