
DOCUMENT MOVED TO DISCOURSE. NO
FURTHER EDITS HERE!
https://discourse.ubuntu.com/t/technical-board-feedb
ack-requested-draft-policy-on-third-party-software-so
urces-included-by-ubuntu/46849
The text prior to the move is preserved here for
reference of editing history and comments.

Third party repository requirements

Background
This document is for use by Technical Board members to come up with a set of requirements
for packages in Ubuntu that enable third party software repositories to be installed by
default.

See: https://lists.ubuntu.com/archives/technical-board/2021-June/002559.html and
https://irclogs.ubuntu.com/2021/07/13/%23ubuntu-meeting.html#t18:59

See also: https://wiki.ubuntu.com/UbuntuSeededSnaps

Draft status [2022-06-21]: the TB seems to have reached a rough consensus on most topics,
so rbasak has started drafting the actual wording for a final policy document. He has tried to
incorporate all views expressed by TB members and further discussion, but how well this
actually represents all TB member views is subject to further review.

How to read this document
● The main part of this document defines the Purpose, Scope and specifies General

Requirements, the mechanism for Exceptions, and the Specific Principles that form
the essence of this policy.

● Appendix A: General Exceptions documents exceptions that we make to our
principles in different classes of special cases.

● Appendix B: Snap Specifics documents how we achieve compliance in the specific
case of Snaps, including Snap-specific interpretations, exceptions to the general
policy both for Snaps in general and specific Snap packages, to be ratified by the
Technical Board.

● Appendix C: Matters not yet addressed documents outstanding issues, such as
current known instances of lack of compliance, any plans we have on how to achieve
compliance in the future, and future requirements that we think we may wish to move
towards, but to which we have not yet committed. However, to make progress, our

https://discourse.ubuntu.com/t/technical-board-feedback-requested-draft-policy-on-third-party-software-sources-included-by-ubuntu/46849
https://discourse.ubuntu.com/t/technical-board-feedback-requested-draft-policy-on-third-party-software-sources-included-by-ubuntu/46849
https://discourse.ubuntu.com/t/technical-board-feedback-requested-draft-policy-on-third-party-software-sources-included-by-ubuntu/46849
https://lists.ubuntu.com/archives/technical-board/2021-June/002559.html
https://irclogs.ubuntu.com/2021/07/13/%23ubuntu-meeting.html#t18:59
https://irclogs.ubuntu.com/2021/07/13/%23ubuntu-meeting.html#t18:59
https://wiki.ubuntu.com/UbuntuSeededSnaps


intention is to push ahead with applying the policy to future changes, and deal with
the backlog of unresolved issues over time.

Plan of Attack
● (Done) Consult with TB members and draft and adjust until consensus is reached

● (Done) Consult with stakeholders from whom implementation will be required (eg.
Snap Store).

● (Done) Consult with affected flavours

● Consult with snap related stakeholders within Canonical to ensure that there are no
hard blockers to implementing what this policy would require once finalised. Note that
this is approval for an in-progress draft. By approving you’re confirming that you
agree this is the way forward and you don’t consider there to be any major
blockers to implementation from your perspective if these were to be
approved. But we might still be tweaking things based on feedback from others
(including community).

Approver Approval Status Approval Date

Oliver Smith Approved

Samuele Pedroni Under review

Alfonso Sanchez-B… Not started

Philip Meulengracht Not started

Sebastien Bacher Approved 3 Jun 2024

● Consult with Ubuntu developers at large

● Ratification by the Technical Board

○ To make progress, initially the Technical Board will ratify only the main body of
the document and exclude the appendices.

● Document somewhere more permanent and public

Discourse Post
Robie will move this draft to Discourse to gather further feedback from Ubuntu Developers
and the wider community. The post will explain the plan as well as present the current state
of the draft. After consultation and any adjustments, the aim is for the Technical Board to
ratify the draft into a formal policy position, which will then be expected to be binding on
Ubuntu developers making further changes to the Ubuntu (deb) archive and on any snap
publishers that are brought in through that mechanism.

The introduction on Discourse post will be Robie’s words (so do not need TB approval as
such) and are drafted as follows. Feedback appreciated!

mailto:oliver.smith@canonical.com
mailto:samuele.pedroni@canonical.com
mailto:alfonso.sanchez-beato@canonical.com
mailto:philip.meulengracht@canonical.com
mailto:sebastien.bacher@canonical.com


Subject: [Technical Board] Feedback requested: draft policy on third party software
sources included by Ubuntu

When a user installs Ubuntu LTS, they expect that the platform and default apps,
together with apps they install from the default repositories, will follow some
principles of quality and stability. For example, they generally expect that behaviour
won't change in surprising ways for its 12-year life, that there will be some form of
support for it in that stable state for that long, and that Ubuntu Developers are able to
maintain it according to these expectations. We have also always maintained our
non-LTS (“interim”) releases to the same stability standards.

Now that we have snaps installed by default and a growing series of "snap installer"
debs being added to the deb archive, what does this mean for these expectations?
Snaps are applicable much more widely than just the software that Ubuntu ships
itself. Specific snaps and snap tracks *may* match our standards for "LTS"-ness, or
they may not. In general, proprietary snaps would presumably be unacceptable for us
to ship by default, but we should have that defined somewhere. Their licences may
change on a new version. And so on.

There are exceptions. Probably the most notable one is Firefox, where we do accept
changes in behaviour in the latest version into our stable releases. Users can also
"opt in" to the upgrade treadmill for anything else by installing the snap for it. In that
case, changes in behaviour wouldn’t be surprising because they opted in.

There are also properties that existed in the traditional model but do not necessarily
exist in the snap world that we would like to keep. For example, a foundational
property of our ecosystem is that users have the ability to download sources, modify
and patch their own systems, as well as help other users receive the benefit of these
abilities, even if the software publishers choose to go in a different direction. We’d
like to maintain that ability for anything that appears in Ubuntu by default.

This isn't just a snap-specific question. The same sort of questions have previously
been raised for Flatpaks.

When this was raised to the Technical Board, we formed a view that we should have
some written policy that defines what users can expect from snaps that are installed
in this way, together with a process for granting exceptions. Since we are working on
this retrospectively, it will be the case that some existing packaging does not comply
with our principles. In time, for each outlier we intend to figure out if we should make
exceptions, bring those packages into line, or something in the middle. We are
starting by defining where we want to be, then we can apply that standard to new
cases, and then we can work towards.

Our current draft follows. Feedback is appreciated.

Purpose
Ubuntu maintains its own standards for certain aspects of quality and behaviour in relation to
software that it ships, with the goal that users can expect and rely upon this. For example,



the "Ubuntu LTS" label comes with an expectation that we do not generally disrupt users with
free-for-all improvements during the lifetime of such an LTS release.

With an increasing reliance on snaps to ship to Ubuntu users by default, it's important to
continue setting appropriate expectations for quality and behaviour outside the traditional
"deb" archive and ensuring that they are met. For example, snaps are intended to delegate
quality considerations and decisions to the snap publisher: anyone can publish snaps. But
we want the snaps that Ubuntu ships by default, or otherwise makes available by default, to
meet our own minimum quality standards.

This document is intended to set a baseline for these expectations in general—for debs,
snaps and any other packaging system that might be used in the future.

Scope
This document specifies Ubuntu's baseline policy requirements on all software present in a
default software source. This includes software sources that are enabled automatically upon
the installation of some other software present in a repository that is enabled by default.
Examples:

1. A snap may be installed on a default Ubuntu installation.

2. Installing a deb from the Ubuntu archive may result in the pulling in of a snap to
support an upgrade path.

3. Someone may want the installation of a deb from the Ubuntu archive to automatically
enable and pull in a Flatpak from FlatHub.

4. The "Software Centre" of an Ubuntu flavour may choose to enable, by default, a third
party package repository of some form.

Any behaviour of this kind must comply with the requirements specified in this document.

The requirements documented here are intended to fulfil user expectations and similar
issues that arise in relation to software origin. These are not the only set of requirements that
exist. For example, Debian policy and the derived Ubuntu policy still apply for debs.

Not in scope
If all routes to install some other software involves users explicitly choosing to opt in to some
other software source and such that they are reasonably informed or is otherwise reasonably
expected to understand that this choice means that Ubuntu is not responsible for software
installed from this source, then this policy does not apply.

General Requirements

Review and approvals
Use of any new class of packaging system to make software appear or available by default
on Ubuntu must receive explicit approval from the Technical Board: compliance with this
document is an expectation but not sufficient in itself.



For example, the Technical Board expects to decline to approve PPAs as a mechanism that
may be enabled in Ubuntu by default. Use of PPAs would harm auditability, diffuse
community oversight, and bypass the release process rather than integrate with it. The
Ubuntu archive should be used instead.

Exceptions
Various packages are exceptional for various reasons, and Ubuntu has a tradition of being
pragmatic about this in order to deliver the best experience to our users. This document
merely specifies the baseline. Exceptions will continue to be made on a case-by-case basis
by the Technical Board or by any other teams as delegated by them. Exceptions granted by
the Technical Board are documented in Appendix A: General Exceptions.

Specific Principles

Principle 1: behaviour will remain "stable" for the lifetime of an
Ubuntu release.
The package publisher must agree that the package and any subsequent updates presented
to Ubuntu users by default will remain stable for the lifetime of the Ubuntu release.

"Stable" means that behaviour from users' perspectives will not change, except to fix bugs,
unless the change already matches a category of standing exception generally granted for
Ubuntu packages themselves, as defined at
https://wiki.ubuntu.com/StableReleaseUpdates#When under the "When" section.

Since updates may be made to the package without review by Ubuntu, this requirement is
enforced by trust only. Ubuntu would appreciate consultation to discuss where we stand on
individual issues that fall close to the line. Ultimately, if Ubuntu is unhappy about the way this
requirement is being met, then the package, and other packages from the same
maintenance teams, may be removed from publication by default in future Ubuntu releases
to help meet the user expectation of stable release stability.

Rationale: Ubuntu users expect, for most packages, that a stable Ubuntu release remains
stable in the sense that functionality and behaviour does not change until they opt-in to
upgrading to a subsequent release. There are a number of pragmatic exceptions to this rule;
the list of these should continue to be managed under the governance of the Technical
Board.

Principle 2: Ubuntu developers can override and patch
packages
There must be a mechanism that can be used by Ubuntu developers to override and patch
the package at source level, such that the updated package gets delivered to users without
any further intervention from their perspective apart from the usual update process.

https://wiki.ubuntu.com/StableReleaseUpdates#When
https://wiki.ubuntu.com/StableReleaseUpdates#When


Outside debs shipped through the primary archive, it is not expected that this mechanism will
be invoked, but the mechanism must exist for use by Ubuntu developers as a last resort.

Some modifications may not be permitted due to law, such as trademark law. Such
modifications are out of scope of this requirement.

A documented test plan must be maintained that is used to validate a package build before
publication for general use. This may be manual or automatic; if automatic then the
automation must be reproducible for use by Ubuntu developers.

Rationale: if a package is found not to meet Ubuntu's quality standards, it must be possible
for Ubuntu developers to be able to fix it in order to uphold these standards. This already
exists for the Ubuntu deb archive, and should continue to exist for anything Ubuntu ships by
default. Issues related to law remain out of scope and their effects unchanged.

Principle 3: package maintainer agrees to maintain packages
for the lifetime of the Ubuntu release.
Maintainers of the package must agree to maintain the package for the lifetime of each
Ubuntu release in which the package was made available.

This means that security and bug fix updates that are consistent with the other requirements
must be made available to the user of the package in the normal way.

Since updates may be made to the package without review by Ubuntu, this requirement, and
the precise meaning of "maintain" such as what fixes would qualify, is enforced by trust only.
Ultimately, if Ubuntu is unhappy about the way this requirement is being met, then the
package, and other packages from the same maintenance teams, may be removed from
publication by default in future Ubuntu releases to help meet the user expectation of stable
release stability.

Rationale: this is an expectation that exists for the Ubuntu deb archive, and should continue
to exist for anything Ubuntu ships by default.

Principle 4: licensing would be acceptable to Ubuntu ie.
dfsg-free
The package must be licensed under terms acceptable under the Debian Free Software
Guidelines.

Rationale: these are the same requirements Ubuntu has always applied to its main archive.

Principle 5: packages are built on a build farm that is trusted by
the Ubuntu project
Packages must be built by and published from Ubuntu’s own infrastructure (ie. Launchpad
and the Snap Store).

Rationale: user security depends on trustworthiness of the build and publication process and
is best served by keeping the number of organisations that must be trusted to a minimum;
namely, one.

https://www.debian.org/social_contract#guidelines
https://www.debian.org/social_contract#guidelines


Principle 6: sources for published builds are retained and
publicly available
Sources and build logs for published builds must be retained, be publicly available, and the
particular source tree and build log discoverable by a user who has a corresponding binary
package installed.

Rationale: this empowers users to modify their installed packages themselves. This is the
essence of Free Software and is a long-standing expectation of users of Ubuntu.

Principle 7: available on all architectures supported by Ubuntu
Packages must be available on all architectures supported by Ubuntu. If you cannot support
an architecture, please ask the TB for an exception.

Rationale: the expectation of a user of a supported architecture is that the user experience is
not degraded in relation to any other supported architecture.

Principle 8: public bug trackers are available
It must be possible for a user to locate and post in a public bug tracker about an issue they
are facing with an installed package.

Rationale: an inability to do this harms the ability for users to develop and share
modifications to packages. Such modifications are the essence of Free Software and the
ability to communicate with other users in a bug database is a long-standing expectation of
users of Ubuntu.

Appendix A: General Exceptions

Exception to Principle 7: available on all architectures
supported by Ubuntu
If Launchpad does not allow the general public to build on a particular architecture, then we
grant an exception that building on that architecture is not required. We strongly recommend
that all architectures remain enabled; in that case it is fine that if builds or tests fail then
automation prevents publication on the unavailable architectures. This allows future fixes to
architecture support to land without further intervention.

Desktop packages
This section only applies to a package that, regardless of architecture support, could only
practically be used exclusively by desktop users.

If such a package is only used for the purposes of being made available in some flavours (by
seeding or presenting it for user installation in a flavour-specific way), then only the
architectures supported by those flavours need to be supported.



This exception may exclude the opportunity for those architectures from doing “remote
desktop hosting” because widespread support across packages for those architectures may
be missing as a result. We think this is an acceptable trade-off between this possibility and
the burden of maintaining such packages in those architectures.

Specific packages
If it is not practical to maintain full architecture support for some specific package, and the
more general exceptions above cannot be used, then the Technical Board may grant and
document an exception here. The following packages currently have such exceptions:

● Firefox. Must build on amd64, arm64 and armhf. Reason: unsupported upstream, too
complex to fix at the distro level.

● snap-store (ie. the new one currently on the preview channel).
● Ubuntu desktop installer. Uses Flutter for which there isn’t a runtime on other arches.

Appendix B: Snap Specifics

How Snaps Implement the Principles

Track mappings and ICE branches
Principles 1 and 2 are implemented in snaps through the use of track mappings and ICE
branches as defined here. Tracks and branches are aspects of snap channels.

● Track mappings. To maintain stable behaviour for the lifetime of a given Ubuntu
release, that release is mapped to a snap track for each snap that is within scope.
For example, we might declare that snap package “foo” shall, by default on a fresh
installation of Ubuntu 24.04, be installed and mapped to track “15” of the “foo” snap
package. This mapping would be expected to remain fixed for the lifetime of Ubuntu
24.04.

● ICE branches. snapd may be configured to follow a given channel branch for a
particular installed snap, and this shall be done for all snaps when their installation
falls under the scope of this policy. The branch name shall be “ubuntu-XX.YY”, where
XX.YY is the Ubuntu release version in question. For example, on Ubuntu 24.04, the
firefox snap should track “latest/stable/ubuntu-24.04” by default. For the purposes of
this policy, we’ll call this snap branch the in-case-of emergency branch (“ICE
branch”). Since the Firefox snap holds an exception to principle 1, only principle 2 is
implemented in this example.

When a user upgrades to a new Ubuntu distribution release, the track mapping is often
expected to change. As an exception, the track mapping may also change during the lifetime
of a stable release.

Behaviour on release upgrades
1. Snaps installed by default. If a snap was installed by default on an Ubuntu

installation, it is preferable for users to automatically refresh to the new default snap
channel automatically (including track, risk and branch) regardless of whether they

https://snapcraft.io/docs/channels


have previously deviated from previous default ICE-enabled channel. This practice is
consistent with other package types and PPAs where release upgrades aim to create
a consistent ‘standard’ configuration. For example: on upgrade from 24.04 to 26.04,
the Software Centre snap should be refreshed to the track mapping and stable risk
channel for 26.04 regardless of whether the user had adjusted it before.

2. Snaps otherwise within scope. If a snap was not installed by default, but instead
installed by a different path that nevertheless falls within the scope of this document,
then it should be refreshed to the new track mapping only if the user had not deviated
from it tracking the ICE branch. For example, the lxd transitional deb on 24.10 might
arrange for the snap to track 5.20/stable/ubuntu-24.10 based on its track mapping for
24.10. If on upgrade to 25.04 it is still tracking a branch that matches /^ubuntu-/ and
the track mapping has changed to 5.21, then it would be migrated to track
5.21/stable/ubuntu-25.04 instead. However, had the user deviated away from
tracking the ICE branch, that case would be indistinguishable from the following case
“Snaps not in scope” and behaviour shall be as if the snap were no longer in scope.
Therefore, users can opt a snap out of falling under this case by bringing them out of
scope using snap refresh or snap switch to no longer track the ICE branch.

3. Snaps not in scope. If the snap is not installed by default on an Ubuntu installation
and was installed by the user manually, then the channel it tracks should not change.
This case is detected by the previous channel being tracked not having an ICE
branch included.

Track mapping changes during release upgrades shall be handled between
ubuntu-release-upgrader and transitional debs as required. If the snap being migrated was
previously not tracking an ICE branch, the user should be notified so that they can manually
return to the previous state if preferred.

Exceptional track mapping changes during the lifetime of an Ubuntu release may occur.
These would require approval from the Technical Board on a case-by-case basis. They
would be expected to be handled via the SRU of a suitable deb package which would then
implement this logic in its postinst. We do not consider it necessary to implement this unless
and until such an exception becomes necessary.

ICE branch details
Normally, ICE branches are tracked by the snapd client but nevertheless do not exist, and in
this case snapd falls back to not using any branch. For example, while tracking
“latest/stable/ubuntu-24.04” it would install and maintain Firefox from the “latest/stable”
channel so long as “latest/stable/ubuntu-24.04” does not exist. However, it does still continue
to track “latest/stable/ubuntu-24.04” even if it has applied this fallback mechanism, so future
publication into the ICE branch would cause users to switch to this published build, enabling
principle 2.

After a release upgrade, the name of an ICE branch changes. If “Behaviour on release
upgrades” above requires the snap to be migrated, then the ICE branch name being tracked
should also change as part of the upgrade.

To identify “Snaps otherwise within scope”, for robustness, we shall consider the tracking of
any ICE branch name as a qualifier, not just the specific ICE branch matching the release
from which we are upgrading. For example, if the system is tracking
“latest/beta/ubuntu-18.04” at the time of upgrading from Ubuntu 22.04 to Ubuntu 24.04, the



upgrade process would change the channel being tracked to “15/stable/ubuntu-24.04” if
that’s what “Behaviour on release upgrades” says, even though the previous track didn’t
match the previous mapping, and even though the previous ICE branch name didn’t match
the release from which we were upgrading.

Summary
The specifics are documented above, but to avoid any doubt, the effect of the snap
implementations of principles 1 and 2 are that snaps installed that are in scope shall usually
combine to track a channel where the track is specified by the track mapping, the risk is
stable and the branch is ubuntu-XX.YY where XX.YY is the Ubuntu release of the
installed system. Exceptionally, if the Technical Board has granted an exception from
principle 1 (eg. Firefox) then the track would be latest instead. For example, if Libreoffice
were to ship as a snap and did not have an exception against principle 1 then a default
24.04 desktop system might track 24/stable/ubuntu-24.04. It would be required that
there is a 24 track in this example since use of a latest track would violate principle 1.
Firefox on the same system would be expected to track latest/stable/ubuntu-24.04
since it does have an exception against principle 1.

Principle 1: behaviour will remain "stable" for the lifetime of an Ubuntu
release
This is achieved by use of track mappings combined with established behaviour by the
snapd client. The track mapping of a snap that is within scope must use a track for which
upstream commits to maintain this principle. This means that latest is not a permitted
track mapping unless an exception exists as below.

We then rely on the snap maintainer to keep the track stable. This is the normal expectation
anyway for snap tracks that aren’t latest; we shall rely on trust as is permitted by the
requirement.

Exceptions
If the Technical Board has granted an exception from this requirement, then we may map to
the “latest” track instead. For example, Firefox has such an exception and maps to the
“latest” snap track.

If the Technical Board were to grant an exception after release, then the mapping will have
changed after release. This might happen for the same reason that we might apply to a deb
package under the existing security and SRU processes, such as if it is necessary to keep
users secure, or because the previously mapped track has become unusable due to
changes in our ecosystem outside Ubuntu.

Principle 2: Ubuntu developers will be able to override and patch the
package
This is achieved by use of ICE branches combined with established behaviour by the snapd
client.



This requires the Technical Board to have the ultimate authority to publish into such an ICE
branch. It is a condition of the permission to include snaps into Ubuntu that the Snap Store
admins defer to the Technical Board’s authority and permit such a publication should, in the
sole opinion of the Technical Board, the need arises.

Principle 3: the package maintainer agrees to maintain the package for
the lifetime of the Ubuntu release
We will document explicit agreement from individual snap maintainers.

Principle 4: licensing would be acceptable to Ubuntu ie. dfsg-free
This will be managed to the same standard as Ubuntu’s deb archive. At a minimum, an initial
check is required by a competent person before moving a snap within scope, and a process
by which deviations can be reported and resolved.

Principle 5: package is built on a build farm that is trusted by the Ubuntu
project
Snaps can be built on Launchpad, or may be built by third parties and then uploaded. It
might technically be possible to enforce that particular snaps are built on Launchpad, but
that would be a feature request that would need to go to the Snap Store. In the meantime,
we should ensure that snaps within scope are all being built on Launchpad, and get a
commitment from publishers that they will continue to do so.

Principle 6: sources for published builds are retained and publicly
available
This is not currently the case, although the required metadata may be available internally.
Implementation will be required in Launchpad/Snap Store.

Principle 7: published on all architectures supported by Ubuntu
This should be straightforward with principle 5 implemented, except where some
dependency isn’t available on some architecture. Compliance will be checked for each
in-scope snap once, and a bug can be filed for identified issues in the future.

Principle 8: a public issue/bug tracker is available
Compliance will be checked for each in-scope snap once. A bug can be filed against the
general “Ubuntu” project in Launchpad for identified issues in the future, and this can be
assigned to the appropriate team.

Additional requirements
The TB agreed in their meeting on 30 May 2023 that any new seeded snaps must be
announced in advance to ubuntu-devel@, to help the TB monitor the quality of seeded
snaps whose maintainers may not necessarily be Ubuntu developers.



Appendix C: Matters not yet addressed

Changes agreed in principle, but yet to be executed

Snap Store and ICE branches
Currently there are snaps that fall within scope where ICE branches aren’t being used, or
where they are used the TB doesn’t have immediate permission to publish to them. In
discussions with the Snap Store team we agreed that this should be possible to arrange in
principle, but this has yet to be arranged technically. However, in the meantime, we can ask
the Snap Store admins for exceptional access should it be required. Since we expect the
need for access to be an exceptionally rare event, it does not seem appropriate to block
progress waiting on a technical ACL implementation.

Snaps yet to be audited
We need to ensure that each snap within scope is either within compliance of the principles
or that an appropriate exception is granted and documented. That work is yet to be
completed. Here is the current status of the snaps identified to be within scope so far:

Existing snaps that are in scope
The following snaps are identified to fall under the scope of these requirements:

Via Ubuntu-specific deb packages

● chromium

● firefox

● lxd (also seeded)

● snapcraft

Via deb package as synced from Debian:

● cyphesis-cpp

● ember

Via seeds

● snapd itself (Samuele says: snapd itself is also a snap that we ship in images, it uses
latest/stable like firefox and the deb has a SRU-exception(?). The snapd deb also
installs it if not already present when installing snaps)

● freeshow (Ubuntu Studio)

● Some of gnome-3-{28,34,38}-{18,20}04

● gtk-common-themes

● Only in Bionic:

○ gnome-calculator

https://bazaar.launchpad.net/~ubuntu-archive/ubuntu-archive-scripts/trunk/view/head:/update-seeds


○ gnome-characters

○ gnome-log

○ gnome-system-monitor

○ pulsemixer (MATE)

● snapd-desktop-integration

● software-boutique (MATE)

● ubuntu-budgie-welcome (Budgie)

● ubuntu-mate-welcome (MATE)

● lxd (also through transitional deb)

● snap-store

● ubuntu-desktop-installer/classic=latest/edge (from wsl)

Via installer image generation:

● subiquity

Principle 3: the package maintainer agrees to maintain the package for
the lifetime of the Ubuntu release
We will arrange a place where agreements made can be documented and complete that for
each snap within scope.

Principle 4: licensing would be acceptable to Ubuntu ie. dfsg-free
● Individual analysis pending: chromium, cyphesis-cpp, ember, firefox, freeshow,

gnome-3-38-2004, gtk-common-themes, lxd, snapcraft, snapd-desktop-integration,
snap-store, ubuntu-desktop-installer, subiquity.

● Snaps compliant: TBC

● Snaps not compliant: TBC

Principle 6: sources for published builds are retained and publicly
available
This is not currently the case, although the required metadata may be available internally.
Implementation will be required in Launchpad/Snap Store.

Principle 7: published on all architectures supported by Ubuntu
● Individual analysis pending: chromium, cyphesis-cpp, ember, firefox, freeshow,

gnome-3-38-2004, gtk-common-themes, lxd, snapcraft, snapd-desktop-integration,
snap-store, ubuntu-desktop-installer, subiquity.

● Snaps compliant: TBC

● Snaps not compliant: TBC



Principle 8: a public issue/bug tracker is available
● Individual analysis pending: chromium, cyphesis-cpp, ember, firefox, freeshow,

gnome-3-38-2004, gtk-common-themes, lxd, snapcraft, snapd-desktop-integration,
snap-store, ubuntu-desktop-installer, subiquity.

● Snaps compliant: TBC

● Snaps not compliant: TBC

Unresolved Issues
The following issues are relevant to this document, and probably contradict this policy. In
order to make progress, we will accept these for now, and hope to find a suitable resolution
later.

Presentation of snaps as equivalent alternatives to debs
William Grant commented:

As written this seems to apply to Ubuntu Software and command-not-found, which
generally present snaps as equivalent in trust and supportability to debs, for the
entire contents of the Snap Store.

I agree this is an issue, but I wonder if this wants to be reworded so it just requires
that they be clearly presented as second-class citizens, or something like that.

This identifies a similar issue in two different software components:

1. Ubuntu Software permits users to discover software, which may be a deb from the
Ubuntu archive, or may be a snap. These are presented as equal. In the case of a
deb, the package would be in compliance with the requirements of this document. In
the case of a snap, this compliance is not required. Users may prefer the snap, for
example because it appears more up-to-date. But in that case, it may lead to
mismatched expectations when compared to Ubuntu’s standards as documented
here.

2. command-not-found can also be used to discover software, and in this case it may
present deb or snap options. When this occurs, exactly the same concern arises as
described in the previous point.

Explicit user opt-in for restricted and multiverse
Sebastian Bacher asked:

Ubuntu has a restricted section for things like nvidia drivers which are provided by
default and non dfsg-free, we should probably have an equivalent exception for
snaps?

Robie Basak responded:

AIUI, these always require explicit user opt-in. Eg. the 22.04.1 installer says "Install
third-party software for graphics and Wi-Fi hardware and additional media formats.
This software is subject to license terms included with its documentation. Some is
proprietary."



I think this puts the restricted archive component out of the scope of these
requirements, based on the user's explicit informed consent that matches the
requirement in the "Out of Scope" section of this document.

If there are specific cases where this is needed for snap, can we start by listing them
please? Then we can consider adding exceptions for them.

However, on checking, the restricted and multiverse archive components are enabled on (for
example) a default installation of 22.04.1 without that checkbox having being checked. It isn’t
clear if this is a mistake or a deliberate decision from the past. If the former, this should be
fixed. If the latter, and we conclude that the prior decision should stand, then this should
become a documented exception.

Access to build logs and source trees for snaps
Sebastian Bacher asked, in reference to the requirement to make publicly available the
sources and build logs, in respect of snaps:

We don't have logs compliant with those requirements today afaik, build-snapcraft.io
doesn't publish build history and logs and launchpad only lists the 10 most recent
builds entries and has no UI to browser older items. Was there any discussion started
with the launchpad team about the topic?

Robie: yes, I did consult with the Snap Store team that this should in principle be fixed at the
Snap Store end. The implementation of this requirement in the case of snaps will remain
incomplete for now, pending the necessary engineering work. But this document initially
defines that our goal as a project is that this will be done.

Other Feedback
There was much valuable feedback received, and this led to many iterations of this
document. However some feedback was considered out of scope or deliberately not acted
upon. To avoid forgetting about it, these are documented here.

Deferred for possible implementation in the future
William Grant asked, in the context of requiring public sources and build logs to be available:
Do we want to require debug symbols too?

http://build-snapcraft.io

