& pythonmsan.

Organization: Python Software Foundation
Sub-organization: EOS Design System
Project Title:

Name Hrishikesh Agarwal

Email hrishikeshagarwalv@gmail.com
Phone number (+91) 9625239524

Timezone UTC+05:30

Github https://github.com/codetheorem
Linkedin https://www.linkedin.com/in/hrish

ikesh-agarwal-794801195/

Code Contribution to EOS

e Contributions to eos-user-story:
1. Pull requests
2. Created Issues

e Contributions to eos-strapi:

1. Pull requests
2. Created Issues

Project Background

EOS is an open-source, and customizable Design System for front-end
developers and UX designers.It has a whole range of products which deals
with making the frontend more accessible and available to the world.

The EOS User Story project is a project that supports development and
testing of other projects. In this you can raise issues or make new feature
requests or discuss some improvements. It helps developers at EOS get
better feedback which results in development of quality products. The
better the feedback the better will be the product so EOS which aims for
high quality requires this for its developers and users. This project can help
any organization in their development cycle.

Synopsis

Currently EOS user story has many features but most of them are in their
primitive stage and there is a need to work more on those features and also
add some more important features. My plan to work on this project is that
first | want to improve existing features and services and then implement

https://github.com/EOS-uiux-Solutions/user-story/pulls/codetheorem
https://github.com/EOS-uiux-Solutions/user-story/issues/created_by/codetheorem
https://github.com/EOS-uiux-Solutions/strapi/pulls/codetheorem
https://github.com/EOS-uiux-Solutions/strapi/issues/created_by/codetheorem

new features. The features can be divided in three parts based on
implementation

e Frontend only
e Frontend + Backend
e Backend only

So, first | will focus on the frontend then | will move onto the backend. The
main reason for this is that the frontend requires more effort as it is directly
facing the user hence needs more care.

The features that | want to improve or add are -

1.

Revamping comment section (Frontend + Backend)

Discussions are a very important part of any product development but
currently we have very few features in the comment section which
gives a boring experience to the users. Our aim is to add more
features to it.

. Adding state management (Frontend)

Currently communication between different components is only
through props and there are so many states lying in each file so to
regulate that and make this application scalable state management is
necessary.

. Improving search and sort (Frontend + Backend)

We can only search using title and author currently but we can add a
general search which searches according to title,author,content etc
on its own and also add more sorting options.

. Adding labels to story (Frontend + Backend)

Any story can be categorized under different categories but we can
also have user created labels under each category which will give
more information about a story.

. Revamping notification system (Frontend + Backend)

There is a need to improve both the frontend and backend of the
notification service. In the backend we need to add notification of

important actions and in the frontend we need to improve the
appearance.

6. Migration to Typescript (Frontend)
Typescript is a static typing language, so for future development it is
important to implement it which will result in less bugs and quality
development.

7. Migration to Strapi V4 (Backend)
We are using Strapi version 3.x for our backend but currently Strapi
has released its version 4 so it is necessary to migrate to version 4 to
avoid future problems.

8. Progressive Web App (Frontend)
PWAs work like a native app but originally it is only a web app so it
gives benefits of both the technologies and provides users a unique
experience.

9. Adding testing in Strapi (Backend)
Add unit testing in the backend to make the application more safe
and robust.

Outline and Methodology

e Revamping comment section (Frontend + Backend)
Discussions are a very important part of any development cycle and
user stories help developers and designers to make a good
product.Currently the comment section of a story don't have much
features you can only just add comment and reply on any
comment.ldea is to add more features to it like edit , delete and add
formatting options for the comment section, reactions.

This idea requires changes in both backend and frontend-

USER

+ New Stor

r

-
testin By: codetheorem w [-

® 9 Y i QA% 1cons a1
Created At: March 5, 2022 < b

© Under

consideration

@ Flanned
checking # Designing
priority <> Implementing
testing & Testing

(&) Deployed
B I 8 ¢ ¢ o
Comments
“?: Maude Hall £ Edit § Delete
(

That's a fantastic new app feature. You and your
team did an excellent job of incorporating user
testing feedback.

[_) Reply

Cookies and Privacy policy ~ We only use strictly necessary cookies

This is the mockup for the comment section which will have a new
comment form with more features and also the comment will have an

edit and delete button which will be visible only to the author of that
comment.

In backend we need to create a model for reactions and also update

model of user-story-comments and user-story-comments-thread.Here
it will look like

"kind":

“collectionName” :

"info": {
“name" :

|

"options": {
“increments” :
“timestamps" :

|

"attributes": {
"emoji®: {

"type":

"collection":
L-
“user_story_comment™:

"collection":

“via": Br—
|
"user_story": {

“model” : Er-

Figma Link

e Adding state management (Frontend)
In frontend we have multiple components and pages and we are
communicating between these using prop drilling However, prop
drilling can become an issue in itself because of its repetitive code.

https://www.figma.com/file/V9apAaijH61THhkzpgkR5u/EOS-user-story-comments?node-id=9%3A514

Root App

Parent 1 Parent 2

Prop Drilling pass props Data all level down

So the solution is to add a state management service like Redux. To
add redux we have to first create a store and to create a store we
need to first create a reducer and initial state then we will create our
store. A reducer is a reducing function which uses actions to mutate
the state of the store. So all the actions currently in components will
be migrated to reducers then we will create a store. To listen to all
changes of the store we can subscribe to the changes using
store.subscribe() method provided by redux. An action is dispatched
using store.dispatch({type: ‘mutation’,...arguments}) . Here is
workflow of redux state management -

4 2

[Actions] /—[Dispatcher

](_/)._
\} “
Q)
4 Reducer)
4)
_ R
View R
R t i
eac
Components - =
- / \:[State]—/
L ¥,

An action is dispatched from a react component which then makes a
reducer mutate the state and then using subscribe we can listen to all
the changes from the state and so every component is in sync with all
other components and results in better performance. Here is example
of a code -

const story = (state = [], action) == {
switch (action.type) {
case "SET_AUTHOR® :
userstory.author.name=action.text
return wuserstory
default:
return state;
| §
;

const store = createStore(story);

store.subscribe(({) = {

console. log(store.getState());
1

store.dispatch{
type: ET T

After creating the store and reducers we will wrap our app.js file with
the provider that redux offers the code will ook like this -

import { Provider } from
import { store } from

render(
<Provider store={storel}=
<App [>
</F o
document . getElementById(
|

After this we can use state and actions anywhere in our app.

We can also add middleware on the top of our dispatch layer. We can
add redux-persist to make our state persist and we can also check all
the reads and writes to the store which helps in debugging more
easily and perfectly.

e Improving search and sort (Frontend + Backend)
Searching for stories is important from a UX point of view. Currently
you have to first select whether you have to search by author or title.
But what if a person have to search by content so to implement we
have two options-
1. Make an option for search by content.
2. Let the user enter anything and give them best results.
According to my judgment, the second option is best.
To implement the second option we need to change the backend and
In frontend we need to just send the search query to the backend. In
order to implement this we have to create a controller in the user-story API

https://www.npmjs.com/package/redux-persist

in strapi here how the controller will look like

async find{ctx) {
let entity=[];
const authorResult = await strapi.services[user-st]-model. find({where:{author:{username:

const titleResult = await strapi.services['user-st].model. find{ {where:{Title:
const contentResult = await strapi.services]'user-st].model. find({where:{Description:
entity.push{authorResult);
entity.push{titleResult);
entity.push{contentResult);

if(ctx.query._limit || ctx.query._start}{
entity = entity.slice{ctx.query._start,ctx.query. limit)

t

return entity.map(story = sanitizeEntity(story, { model: strapi.models|

s

The above controller catches for all find requests and it first searches for
stories having matching author then it checks for title and then content and
all the relevant stories are sent to frontend in a paginated format.
Alternatively we can also use third party services like Algolia to implement
search.

Another important thing is sorting the stories. So currently sorting is not
working properly in the user story. To resolve this issue | have created a PR
in backend as well as a PR in frontend. Idea is to add more sorting
methods like latest,earliest and to implement this | have to update the
frontend by adding more options in dropdown and updating the controller in
the backend. Latest will sort the stories in descending order of created date
and earliest in ascending order.

n Categories v A sortBy A Most Voted

Mo /oted

Most Discussed

Latest

sorting: most voted, not working [[F9 ,l! Earliest 0
1l vote [the home page the sorting for "most voted or most discussed is not worki v g e use_caperience g o

]

e Adding labels to story (Frontend + Backend)
We have categories that we can add while creating a new story but it
does not give exact description or enough metadata about the story

https://www.algolia.com/
https://github.com/EOS-uiux-Solutions/strapi/pull/32
https://github.com/EOS-uiux-Solutions/user-story/pull/221

so the need for labels can be explained through a example let's
assume that there is a story related about a bug so a user will have to
look into the description of the story to know whether it is related to
him or not but what if there are labels so that he will see the labels
and can decide that whether he should go and read the description or
move ahead.

To implement we have to add label attribute in model of user-story
and make a new collection for labels in strapi

1
“kind":
"collectionName" :
“info": {
“name" :
|
"options": {
“increments” :
"timestamps" :
-
"attributes": {
*description”: {
“type":
“reguired”:
b
"color": {
“type”:
"required”:
b
"user_story": {
"wia": _
“collection™:
ks
"author": {
“plugin®:
“model”:
"required”:

The frontend changes will look like this-

USER
STORY @1

New Story

Title

Product

Select a product VI

Category

Select a category v]

Priority

Select priority v]

Description

T B I

i
iii
®

Drag 'n' drop some files here, or click to select files

Labels

) “Libci | Lobel | Lsbel I Lobel I “Lobel |

Cookies and Privacy policy ~ We only use strictly necessary cookies

K Add Label

 Add New Label

Assign Color Preview

My Labels

Add Cancel

.

F
bug ._k F Createdby Categor y
4

‘ gory
codetheorem Accessibility
ily Vote React Node.js i~

After clicking the add button a modal will open having title Add Label
which is shown above and a user can add label and delete its label
from there and choose appropriate labels there. Even after adding the
label it can be deleted by using the red badge above the label. These
labels will be visible to users in the story component shown above.
Figma Link

)

https://www.figma.com/file/nxlha9rOFgEbHEfRsOAJf8/EOS-User-Story?node-id=0%3A1

e Revamping notification system (Frontend + Backend)

Notifications are very important for user engagement in an
application. Any user wants to get notified of important
events.Currently in our app we have a very primitive type of
notification system. | propose to add features like delete, save and
unsubscribe to a notification. | want to change the frontend of the
notification page as well which will look like this

Notifications

Bug Story ﬁ Bessie Cooper 6 hours ago

-

Bug Story *’ Bessie Ci

-

ooper 6 hours ago

Cookies and Privacy policy ~ We only use strictly necessary cookies

To implement this in backend we need to update all our controllers
and model lifecycle hooks where we are using notification service and
in addition to this we need to add notification service for other
important actions to like reply of comment,mention of user in a
story,story report etc.In this regard | have updated strapi by adding
notification for a vote action that when somebody upvotes your story.
PR related to this link. Figma Link

e Migration to TypeScript (Frontend)

https://github.com/EOS-uiux-Solutions/strapi/pull/28
https://www.figma.com/file/nxlha9rOFgEbHEfRsOAJf8/EOS-User-Story?node-id=0%3A1

Js"

TypeScript adds type support to JavaScript and catches type errors
during compilation to JavaScript. Bugs that are caused by false
assumptions of some variable being of a certain type can be
completely eradicated by adding TypeScript to the project.

Migration Steps-
1. Add TypeScript to your project by npm i -D typescript
2. Make a tsconfig.json file that will have all definitions

1
“compilerOptions”: {
"target": "e

= 3
“skipLibCheck”:
“esModulelnterop”: ,
"allowSyntheticDefaultImports":
"strict":
“forceConsistentCasingInFileNames"™:
"module”: "esne .
“moduleResolution™:
“resolvelsonModule”:
"isolatedModules":
“moEmit":
"jsx":

¢

]
“include”: [

]
1

. Install all TypeScript definition files of project dependencies

. Start changing JavaScript files to TypeScript files in a phased manner
Various methods that we will employ to change the code-

Creating Interfaces (Structure of a variable)

interface User {
name: string; id: number;
X

declare var current: User;

e Defining prop types for every file.
e Defining definition of hooks in every file

After changing files in TypeScript we will test all functionality
thoroughly and we will also change cypress unit tests and migrate
them to TypeScript.Cypress itself comes with a global type definitions
we will add our type definitions in that to support custom functions.

o k0N

declare global {
namespace Cypress {

interface Chainable {

dataCy(value: string): Chainable<Elements

Migration to Strapi V4 (Backend)

The need for migrating the current backend from Starpi V3 to Starpi
V4 is because Strapi has introduced many code breaking changes in
the new version and Strapi can also end its support for V3 and project
is currently in development so it can undergo such change but when
launched it would be difficult to make such change.

Major changes to be done while migration-

. Changing Database configuration file and setting up PostgreSQL

because Strapi has removed support for MongoDB.We are using
PostgreSQL because it is highly extensible.

Adding admin.js which will contain auth secret.

Updating all dependencies according to Strapi V4

Creating new controller files which contains new implementation eg-
Migrating GraphQL resolvers to the register method found in the
srclindex.js file of Strapi v4

Other than this we will use codemods provided by strapi for migration.

https://docs.strapi.io/developer-docs/latest/setup-deployment-guides/configurations/optional/functions.html#register
https://github.com/strapi/codemods/

const { createCoreController } = require(tra tra). factories;

module.exports = createCoreController('z api-na tent-type-name', {{ strapi }) = ({

async Tind{ctx) {

ctx.query = { ...ctx.query, local: 'en’ }

const { data, meta } = await super.find(ctx);

meta.date = Date.now()

return { data, meta };

return go(f, seed, [])

(Controller in Strapi V4)

To solve the authentication problem in user story we will update our
cookie configuration and will add an option to save cookies in
localStorage if the browser does not allow storing cookies like safari
browser does not allow sites to set cookies.

Progressive Web App (Frontend)

Progressive Web Apps (PWAs) are web apps that use service
workers, manifests, and other web-platform features in combination
with progressive enhancement to give users an experience on par
with native apps.

In order to make user-story a PWA we need to check a list provided
by google which lists main aspects of a PWA.

| ran a test on lighthouse to check performance of our app here is the
test-

https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://web.dev/pwa-checklist/#core

PWA

These checks validate the aspects of a Progressive Web App. Learn more

0 INSTALLABLE

PWA OPTIMIZED

A Does not register a service worker that controls page and start_url ~
@ Configured for a custom splash screen ~
@ Sets atheme color for the address bar v
@ Content is sized correctly for the viewport v

® Hasa<metz name="viewport”> 1ag With widtn OF initial-scale ~

® Provides a valid aople-touch-icon v
A Manifest doesn't have a maskable icon v
@ Conngured for a custom splash screen v
@ Sets atheme color for the address bar ~
@ Contentis sized correctly for the viewport v
® Hasa<mets name="viewport”> 1ag WIth widtn OF initial-scale ~
® Provides a valid zpple-touch-icon ~
A Manifest doesn't have a maskable icon ~

Main issue that comes in front of us in registering a service worker.
Service worker loads instantly for the user regardless of the network
state.

After adding service worker we will install that and add a
manifest.json file it takes care of app name,path to icons etc

“name”: “E0S user-story”,
“short_name”: “user-story”,
“start_url”: “index.himl”,
“icons™: [

{

“src”: “public/icon.png
“sizes”: “192x192",

“type”: “imagefpng”

1,

“background_color”: “#d3ebf@”,
“display”: “standalone”,
“theme_color”: “#le3b51"

After adding manifest.json we will add files that need to be cached in
the service worker.

We can also introduce push notification because a PWA has access
device specific functionality also.
Adding testing in Strapi (Backend)

Adding testing helps in delivering a safe system and makes the
development process more secure so like our frontend we should
also have unit testing in the backend.Lot of people face problems
while setting up strapi so this helps us to figure out many problems
easily.

We will use the jest framework for adding testing . Our major focus of
testing will be controllers and model lifecycle methods.

In order to run tests we need to make a strapi instance that runs in a
testing environment and also a database that create and delete
between tests.

const Strapi = require("strapi');
const hitp = require("http");

let instance;

async function setupStrapi() {
I

if (!instance) {
awalt Strapi().load|);
instance = strapi;
awalt instance.app
.use{ instance.router.routes())
.use{ instance. router.al lowedMethods()) ;

instance.server = http.createServer(instance.app.callback());
1
I
return instance;
1
module.exports = { setupStrapi };

e UI/UX Improvements (Frontend)

1. Adding shareable links for profiles of users along with a copy
button to copy the URL of the user-story.

2. Allowing mention of user and story in description of a story.

3. Adding network status toast notification to notify users when
they are offline.

4. Updating responses of different actions that users do with
appropriate responses.

5. Updating and adding test cases for increasing test coverage.

Schedule

Community Bonding Period (May 20 - June 12)
e Working on minor bugs and improvements .
e Learning related technologies like TypeScript.
e Refining the ideas and making a blueprint of the work.
e Discussion with mentors and other contributors about the project.

Week 1 (June 13 - June 19)
e Will start work on migration of Strapi V3 to V4.
e Preparing file structure.
e Adding new dependencies.
e Setting up configuration files.

Week 2 (June 20 - June 26)

e Complete configuration of Strapi V4.
e Start working on route migration.
e Resolving bugs that come during the migration

Week 3 (June 27 - July 3)

e Migration of controllers and services.

e \Working on middleware.
e Discussion with mentors over the progress of the project.

Week 4 (4 July - 10 July)
e Working on GraphQl resolvers.
e Finishing up migration.
e Updating documentation of Strapi backend.

Week 5 (11 July - 17 July)

e Will start working on typescript migration of user-story.
e Initial setup required for migration.
e Working on the reviews received from mentors on Strapi migration.

Week 6 (18 July - 24 July)

e Finalizing tsconfig.json file.
e Installing dependencies compatible with Typescript.
e Start migration of code files of Javascript to TypeScript.

Week 7 (25 July - 31 July) Eirst Evaluation
e Working on code files and migrating them to Typescript.
e Discussion with mentors over the progress.

Week 8 (1 August - 7 August)

e Testing the work done on migration of code.
e Updating documentation of user-story.
e \Working on reviews received from mentors.

Week 9 (8 August - 14 August)
e Working on the comment section frontend part.
e Working on implementation of the comment section backend.

Week 10 (15 August - 21 August)
e Backend part of comment section to be completed.

e Testing the implemented feature.
e Discussion with mentors over the implemented features.

Week 11 (22 August - 28 August)
e Working on adding state management to user-story.
e \Working on reviews received from mentors.
e Documenting the implemented feature.

Week 12 (29 August - 4 September)
e Continue with the previous week’s work.

e Finalizing state management implementation.
e Testing state management.

Week 13 (5 September - 11 September) Second Evaluation
e Improving search and sort functionality.
e Working on reviews received from mentors.

Week 14 (12 September - 18 September)

e Working on adding labels functionality.
e Removing bugs that come during the implementation.

Week 15 (19 September - 25 September)
e Finalizing adding labels functionality.
e Testing the added functionality.
e Documenting the functionality.

Week 16 (26 September - 2 October)

e Start working on notification service.
e Working on reviews received from mentors.

Week 17 (3 October - 9 October)

e Implementing notification service in backend and frontend.
e Documenting the implementation.

Week 18 (10 October - 16 October)
o Will start implementing PWA.
e Working on reviews received from mentors.
e Discussion with mentors over PWA

Week 19 (17 October - 23 October)
e Will work on PWA service worker implementation.
e Testing PWA thoroughly.
e Documenting the implementation.

Week 20 (24 October - 30 October)

e Start adding tests to the Strapi backend.
e Working on reviews received from mentors.

Week 21 (31 October - 6 November)

e Complete writing all test cases for Strapi backend.
e Documenting the work done.

Week 22 (7 November - 13 November)
e \Working on miscellaneous improvements.
e Testing the integration of backend and frontend.
e Discussion with mentors.

Week 23 (14 November - 21 November) Third Evaluation
e \Working on final updates
e Documenting all the work done till now.
e Final submission

Previous Experience

| started working in JavaScript from my first year and slowly | started
to learn new technologies like Vue , React, Node.js etc along with
making self projects in them and also contributing to various open
source organizations. | also learnt C and python during my studies.

In my first year | did an internship at APIcon.io. | worked on projects
related to ApexCharts, Kanban system using React-beautiful-dnd,
Rich text editor using Draft.js,Mobile app using React.js, Redis
implementation for caching, API calls count and API analytics
dashboard.

Other than this | have done an internship at Famstar in which |
worked on a dashboard build using Next.js and express.js. Recently |
completed my internship with Workhack in which | built a dashboard
from scratch and used technologies like react.js,FASTAPI
(python),Airtable. | worked on both the frontend and backend part of
the dashboard.

| have also contributed to open source organizations like Catalyst,
Layer5,Codeuino etc. | also served as mentor for KWOC(Kharagpur
winter of code) 2020. | also conducted an international hackathon
named Hack the Mountains 2020 which was sponsored by
MLH.Other than this | have worked on numerous small and medium
scale projects.

About Me

| am currently studying in third year at Shri Mata Vaishno Devi
University (SMVDU), Katra. | like to explore things, especially when it
is related to programming and computers. | also like reading books
about the world,philosophy,and metaphysics. | like playing musical
instruments in my free time. | have always worked for open source

https://apicon.io/
https://www.famstar.in/
https://workhack.io/
https://layer5.io/

and EOS is a great platform from which | can utilize my skills for
solving real world problems. EOS gives a great opportunity to learn
new things and polish our skills. Looking forward to working with nice
people at EOS on new projects and technologies .

Stretched Goals

(These ideas can be implemented once the above goals are
accomplished)

Working on a CLI that provides a simple method to run user story and
integrates frontend and backend and gives the user as a single
package. THe CLI will customize many settings for the user. This CLI
will help other people to launch user story for their own organization.

