
Multi-Language IDE
Implemented in JS

Scope and Architecture
Overview
This document details the scope of the IDE framework implemented in JavaScript, HTML
and CSS. It also details the architecture choices that will guide the development of the
software.

Scope
The Javascript IDE project has the mandate to:

● Provide the end-user with a full-fledged multi-language IDE (not just a smart editor)

● Support equally the paradigm of Cloud IDE and Desktop IDE

● Provide extenders with a platform on which to build their own IDE-like products

● Provide support for multiple languages via the language and debug server protocols

● Provide modern GUI with javascript UI libraries

● Decouples frontend plugins from backend services through JSON RPC protocols and/or

REST APIs.

● Provide a maintainable code base, with statically typed APIs and clear API life-cycles.

● Use state-of-the-art technology (e.g. TypeScript 2.2)



1

Supported Architectures
To support both native desktop IDEs as well as cloud based IDEs, the basic framework
needs to be separated into a front-end part and a back-end part. We see three kinds of
deployments we want to support.

1) Web Client, Remote Back-end (Cloud IDE)
The front-end is served from a remote server to a local browser, connecting to a
remote back-end.

2) Native Front-End, Local Back-end
Based on Electron an IDE would run the front-end as well as the back-end locally.

3) Native Front-End, Remote Back-end
Based on Electron only the front-end would run locally, connecting to a remote



2
back-end.

Architecture Diagram
The below diagram illustrates the main components and how they are connected. The list
of dependencies can be found in in appendix.



3



4

Single User
For all three scenarios, we assume a single user scenario. That is, if the back-end runs
remotely it should run in a sandboxed environment (e.g. docker container), with a
dedicated file system. It should be possible to have more than one client connected to the
backend, but it will serve the same file system. So for multiple workspaces an additional
server (out of scope for this effort, but e.g. provided by Eclipse Che) would be responsible
to start / stop such container based remote workspaces.

TODO: Authentication

TODO: Explain how multi-user would work (i.e. workspace servers)

Communication
Communication between frontend components and backend components should be done
through well defined JSON-RPC protocols and/or REST APIs. This allows not only to change
the actual implementations if needed, but also to distribute the backend into multiple small
backend agents running implemented in different programming languages and running
independently from each other maybe even on different systems.

That said at the core we will target one backend running in Node.js.

https://wiki.eclipse.org/Orion/Server_API

Frontend
The frontend application should run as a single page application, that can be hosted in
modern browsers [1] and in an Electron BrowserWindow (Chromium). The Electron version
should leverage Electron specific APIs to integrate with the native desktop as much as
possible. For that matter certain services will be implemented specifically for browsers and
for electron. Menus, for instance, are supported natively by electron. When running in the
browser the framework needs to render it using HTML.

The right implementation will be picked up by configuration (dependency-injection).

Dependency Injection
We believe that a loosely coupled architecture is key to allow integrating the many different
components that already exist or may be developed in future. At the same time we want to
enable everyone to use the framework as a basis for their IDE-like products and with that
fine grained control over how the entire application is configured should be provided.

Dependency Injection delivers on these needs and in addition increases testability of the
code base.

Language support



5

The Language Server Protocol is a widely used JSON-RPC protocol for providing editing
services for languages. Our Framework shall fully support this protocol and in fact do any
advanced language services mainly through this protocol. Therefore, the editor component
we use should support the LSP. It should be possible and relatively easy to extend the
protocol with addition language-specific messages.

Client side configuration for things like lexical coloring and bracket matching should be
supported.

Theia extensions will be able to add logic to decide when to launch a specific Language
Server. For example, when opening a .cpp file, it could spawn the clangd process on the
backend in order to support C/C++ or when opening a .java file, it could spawn the Eclipse
JDT Language server. Extensions could also expose user preferences that will be sent to
language servers in order to configure them in a certain way.

Debugging support
The debug component in Theia enables any debugger to be integrated with Theia. Theia
offers an extendable framework for debugger UI and external debugger protocol
integration.

For example one can integrate GDB or Chrome Debugger inside Theia and be able to
extend common debug UI components for each debugger and support the MI protocol for
GDB and the Chrome Remote Debugger Protocol for Chrome.

The high level architecture behind this is defined as such:

Extendability



6

A frontend application as well as the main backend application consists of multiple
extensions. An npm package can expose one or more extensions, that can contribute the
to the frontend and main backend application.

Such contributions are

- Service hooks for other extensions
- Service implementations of other extension’s service hooks
- Singleton Services
- Resources (e.g. CSS) (frontend application)

Npm packages containing Theia extension are published and consumed through regular
npm registries.

Provided a consistent set of extensions a Theia application can automatically be generated.
The generator can be used at build-time to pre-package Theia applications as well as at
runtime through the dynamic extension system.

The dynamic extension system provides a user interface to search for available extensions
and change the set of active extensions at runtime. The extension system will regenerate
the frontend and backend application and restart them after the user applied changes to
the set of active extensions.

Preferences
A Preferences extension should allow users to override default preferences on user and
project level. Preferences are stored in a readable textual format (YAML or JSON).

The preferences should be accessible by other frontend components.

Layout
A layout system shall allow other frontend components to contribute UI widgets. Any UI
widget based on HTML and CSS should work. The layout should be dock-layout like and
allow for splitting views and laying them out using drag and drop.

Command Palette
A command palette should allow to discover and access all available commands. A central
command registry allows to contribute commands.

Menu
A global menu service, allows to configure, register and contribute to the main menu and
the different context menus. The actual menus should be rendered natively in Electron and
using HTML when running in a standard browser.

Menus can be enabled and disabled based on contexts.



7

A context is a globally registered, named predicate.

Keybindings
A global keybinding service allows to register keybindings which are accelerators mapped
to commands. They can be enabled and disabled based on contexts.

File System
Access to a workspace is a central requirement for any IDE-like application. A backend
service shall allow accessing a workspace through a well defined JSON-RPC protocol. URIs
shall be used to identify resources.

Navigator
The navigator is a UI widget that allows the user to interact with the workspace. It should
represent the workspace in a tree. It registers a context menu to which common file
commands (copy, paste, delete, create, open) shall be contributed.

Search
It should be possible to search for textual occurrences in the workspace. Regex as well as
glob patterns shall be supported. Replace should be supported, too.

Terminal
A terminal extension shall provide the user with a terminal widget that is connected to the
shell of the backend.

Long Running Task Support
It should be possible to start longer running tasks on the backend and frontend that can be
monitored (progress and cancellation) from the frontend.

Git Support
Support for Git should make it easy to stage and prepare commits, as well as reviewing the
history of changes.

Internationalization
A central component for internationalizing labels and other textual information provided to
the user.

Builds



8

A Theia-based IDE shall be able to trigger a build, of the code in the workspace, reporting to
the user any errors/warnings that the build tools might output. Upon successful build, we
should obtain an executable or application.

A builds extension shall allow the user to define, edit and execute build commands. A build
command will be configured to call a build script on the backend, with arbitrary CLI
parameters. It shall have a console log parser associated to it, that will identify and report
warnings and errors, from the build's terminal or process output.

It shall be possible for extenders to provide their own "console log parsers", to customize
the way errors are parsed for currently supported languages or to to support building for
new languages.

Appendix

Dependencies
Theia has first-level dependencies on the following node modules (excluding development
dependencies):

Module name version License Src repo

electron 1.6.2 MIT github

express 4.15.2 MIT github

inversify 3.1.0 MIT github

monaco-editor-core 0.8.2 MIT github

monaco-editor 0.8.3 MIT github

monaco-languageclient 0.0.1-alpha.2 MIT github

ws (WebSocket) 2.2.0 MIT github

reconnecting-websocket 3.0.3 MIT github

@phosphor/application 0.1.5 BSD-3-Clause github

@phosphor/algorithm 0.1.1 BSD-3-Clause github

@phosphor/domutils 0.1.2 BSD-3-Clause github

@phosphor/messaging 0.1.2 BSD-3-Clause github

@phosphor/signaling 0.1.2 BSD-3-Clause github

https://www.npmjs.com/package/electron
https://github.com/electron-userland/electron-prebuilt
https://www.npmjs.com/package/express
https://github.com/expressjs/express
https://www.npmjs.com/package/inversify
https://github.com/inversify/InversifyJS
https://www.npmjs.com/package/monaco-editor-core
https://github.com/Microsoft/vscode
https://www.npmjs.com/package/monaco-editor
https://github.com/Microsoft/monaco-editor
https://www.npmjs.com/package/monaco-languageclient
https://github.com/TypeFox/monaco-languageclient
https://www.npmjs.com/package/ws
https://github.com/websockets/ws
https://www.npmjs.com/package/reconnecting-websocket
https://github.com/pladaria/reconnecting-websocket
https://www.npmjs.com/package/@phosphor/application
https://github.com/phosphorjs/phosphor
https://www.npmjs.com/package/@phosphor/algorithm
https://github.com/phosphorjs/phosphor
https://www.npmjs.com/package/@phosphor/domutils
https://github.com/phosphorjs/phosphor
https://www.npmjs.com/package/@phosphor/messaging
https://github.com/phosphorjs/phosphor
https://www.npmjs.com/package/@phosphor/signaling
https://github.com/phosphorjs/phosphor


9

@phosphor/virtualdom 0.1.1 BSD-3-Clause github

@phosphor/widgets 0.1.7 BSD-3-Clause github

reflect-metadata 0.1.10 Apache-2.0 github

vscode-ws-jsonrpc 0.0.1-alpha.1 MIT github

vscode-languageserver 3.2.0 MIT github

The following node.js modules are not yet used but are candidates for future development

Module name version License Src repo

xterm MIT github

d3 BSD-3-Clause github

jointjs MPL-2.0 github

nodegit MIT github

sprotty Apache-2.0

sprotty Dependencies
sprotty (graphics framework) has first-level dependencies on the following node modules
(excluding development dependencies):

Module name version License Src repo

inversify 3.1.0 MIT github

snabbdom 0.6.4 MIT github

snabbdom-jsx 0.3.1 MIT github

snabbdom-virtualize 0.6.0 MIT github

file-saver 1.3.3 MIT github

https://www.npmjs.com/package/@phosphor/virtualdom
https://github.com/phosphorjs/phosphor
https://www.npmjs.com/package/@phosphor/widgets
https://github.com/phosphorjs/phosphor
https://www.npmjs.com/package/reflect-metadata
https://github.com/rbuckton/reflect-metadata
https://www.npmjs.com/package/vscode-ws-jsonrpc
https://github.com/TypeFox/vscode-ws-jsonrpc
https://www.npmjs.com/package/vscode-languageserver
https://github.com/Microsoft/vscode-languageserver-node
https://www.npmjs.com/package/xterm
https://github.com/sourcelair/xterm.js
https://www.npmjs.com/package/d3
https://github.com/d3/d3
https://www.npmjs.com/package/jointjs
https://github.com/clientIO/joint
https://www.npmjs.com/package/nodegit
https://github.com/nodegit/nodegit
https://www.npmjs.com/package/inversify
https://github.com/inversify/InversifyJS
https://www.npmjs.com/package/snabbdom
https://github.com/paldepind/snabbdom
https://www.npmjs.com/package/snabbdom-jsx
https://github.com/yelouafi/snabbdom-jsx
https://www.npmjs.com/package/snabbdom-virtualize
https://github.com/appcues/snabbdom-virtualize
https://www.npmjs.com/package/file-saver
https://github.com/eligrey/FileSaver.js

