This document no longer lives here, and may be out of date. Please
view or edit it at its new home on GitHub.

Here are brief explanations of how a few things work in the Deluge codebase as of June
2023. This is very minimal documentation, and you’ll need to dig deep into the codebase to
see how everything works.

These sections also appear as comments in the relevant .h files in the codebase.

By Rohan Hill, sole Deluge developer until open source release in June 2023.

https://github.com/SynthstromAudible/DelugeFirmware/wiki/Codebase-introduction

Audio / CPU performance

A huge number of factors influence the performance of a particular Deluge firmware build.
Subpar performance will usually be noticed in the form of sounds dropping out in songs
which performed better in other firmware versions. Ensuring optimal performance of any
code modifications you make, and subsequently their builds, will be a big challenge. But
don’t sweat it too much - if you’ve added some cool features which are useful to you or
others, maybe slightly lowered audio performance, which is only noticeable in certain
circumstances, is a reasonable tradeoff?

The Deluge codebase, since 2021, has been built with GCC 9.2. | (Rohan) compared this
with the other 9.x GCC versions, some 10.x ones, and the 6.x version(s) that the Deluge had
used earlier. Performance differences were negligible in most cases, and ultimately | settled
on GCC 9.2 because it resulted in a built binary which was smaller by a number of kilobytes
compared to other versions. GCC 10.x was particularly bad in this regard.

The build process includes LTO - this helps performance a fair bit. And normal 02
optimization. These are both disabled in the HardwareDebug build configuration though, for
faster build times and ease of code debugging. If you're using live code uploading via a
J-link and want to do some tests for real-world performance, you should enable these for this
configuration, at least while doing your tests.

A few other of the standard compiler optimizations are enabled, like —gc-sections to remove
unused code from the build. Beyond that, I've experimented with enabling various of the
most advanced GCC optimizations, but haven’t found any that improve overall performance.

Audio rendering

The Deluge renders its audio in “windows” (or you could more or less say “buffers”), a
certain number of samples long. In fact, the Deluge’s audio output buffer is a circular,

128-sample one, whose contents are continuously output to the DAC / codec via 12S

(Renesas calls this SSI) at 44,100hz. That buffer is an array called ssiTxBuffer.

Each time the audio routine, AudioEngine::routine(), is called, the code checks where the
DMA outputting has gotten up to in ssiTxBuffer, considers where its rendering of the
previous “window” had ended at, and so determines how many new samples it may now
render and write into ssiTxBuffer without “getting ahead of itself”.

This scheme is primarily useful because it regulates CPU load somewhat, for a slight
tradeoff in audio rendering quality (more on that below) by using longer windows for each
render. For instance, if the CPU load is very light (as in, not many sounds playing), rendering
a window will happen very fast, so when the audio routine is finished and is then called again
the next time, only say one or two samples will have been output via DMA to the DAC. This
means the next window length is set at just one or two samples. |.e. lighter CPU load means
shorter windows.

Often the window length will be rounded to a multiple of 4, because various parts of the
rendering code (e.g. oscillator table lookup / interpolation) use Arm NEON optimizations,
which are implemented in a way that happens to perform best working on chunks of 4
samples. Also, and taking precedence over that, windows will be shortened to always end at
the precise audio sample where an event (e.g. note-on) is to occur on the Deluge’s
sequencer.

The window length has strictly speaking no effect on the output or quality of oscillators
(including sync, FM, ringmod and wavetable), filters, most effects, sample playback, or
timings/jitter from the Deluge’s sequencer. Where it primarily does have a (barely audible)
effect is on envelope shapes. The current “stage” of the envelope (i.e. A, D, S or R) is only
recalculated at the beginning of each window, so the minimum attack, decay or release time
is the length of that window, *unless* that parameter is in fact set to 0, in which case that
stage is skipped. So, you can get a Oms (well, 1 sample) attack time, but depending on the
window length (which depends on CPU load), your 0.1ms attack time could theoretically get
as long as 2.9ms (128 samples), though it would normally end up quite a bit shorter.

With envelopes (and LFO position actually) only being recalculated at the start of each
“‘window”, you might be wondering whether you’ll get an audible “zipper” or stepped effect as
the output of these changes sporadically. The answer is, usually not, because most
parameters for which this would be audible (e.g. definitely anything level/volume related) will
linearly interpolate their value change throughout the window, usually using a variable
named something to do with “increment”. This is done per parameter, rather than per
modulation source, essentially for ease / performance. Wavetable position and FM amounts
are other important parameters to do this to.

But for many parameters, the stepping is not audible in the first place, so there is no
interpolation. This includes filter resonance and oscillator / sample-playback pitch. Especially

sample-playback pitch would be very difficult to interpolate this way because the
(unchanging) pitch for the window is used at the start to calculate how many raw
audio-samples (i.e. how many bytes) will need to be read from memory to render the
(repitched) audio-sample window.

Sounds, Instruments and “Drums”

An Instrument is the “Output” of a Clip - the thing which turns the sequence or notes into
sound (or MIDI or CV output).

Instruments include Kit, MIDlInstrument, and CVInsttrument. And then there’s
SoundInstrument, which is basically a synth - more on that below.

Kits are made up of multiple Drums. Even when they are not drum sounds, the class is
called Drum, for better or worse. In most instructional material for users, Synthstrom has
referred to them often as “items within kits”, or sometimes “rows” or “sounds” where
applicable.

Types of Drum are MIDIDrum, GateDrum, and SoundDrum (most often a sample, but we’'ll
talk more about that).

And then there is the class called Sound - which can be either an Instrument or a Drum, in
the form of Soundinstrument or SoundDrum respectively. These classes are implemented
using “multiple inheritance”, which is sacrilegious to many C++ programmers. | (Rohan)
consider it to be a more or less appropriate solution in this case and a few others in the
Deluge codebase where it's used. It's a little while though since I've sat and thought about
what the alternatives could be and whether anything else would be appropriate.

Anyway, Sound (which may be named a bit too broadly) basically means a synth or sample,
or any combination of the two. And, to reiterate the above, it can exist as a “synth” as the
melodic Output of one entire Clip(s), or as just a Drum - one of the many items in a Kit,
normally associated with a row of notes.

ModelStacks

This is a system that helps each function keep track of the “things” (objects) it's dealing with
while it runs. These “things” often include the Song, the Clip, the NoteRow - that sort of
thing. This was only introduced into the Deluge’s codebase only in 2020 - some functions do
not (yet) use it. Its inclusion has been beneficial to the codebase’s ease-of-modification, as
well as code tidiness, and probably a very slight performance improvement.

Previously, the Deluge’s functions had to be passed these individual “things” as arguments -
a function might need to be passed a Clip and an AutoParam, say. However, if | later
decided that a function needed additional access - say to the relevant ParamCollection, this
could be tiresome to change, since the function’s caller might not have this, so its caller
would have to pass it through, but that caller might not have it either - etc. Also, all this
passing of arguments can’t be good for the compiled code’s efficiency and RAM / stack /
register usage.

Another option would be for each “thing”, as stored in memory to include a pointer to its
“parent” object. E.g. each Clip would contain a pointer back to the Song, so that any function
dealing with the Clip could also find the Song. However, this would be unsatisfactory and
inefficient because RAM storage and access would be being used for something which
theoretically the code should just be able to “know”.

Enter my (Rohan’s) own invented solution, “ModelStacks” - a “stack” of the relevant parts of
the “model” (objects representing the makeup of a project on the Deluge) which the currently
executing functions are dealing with. Things can be “pushed and popped” (though the
implementation doesn’t quite put it that way) onto and off the ModelStack as needed. Now all
that needs to be passed between functions is the pointer to the ModelStack - no other
memory or pointers need copying (except in special cases), and no additional arguments
need to be passed. The ModelStack typically exists in program stack memory.

For example, suppose a Song needs to call a function on all Clips. The ModelStack begins
by containing just the Song. Then as each Clip has its function called, that Clip is set on the
ModelStack. And suppose each Clip then needs to call a function on its ParamManager -
that’s pushed onto the ModelStack too. So now, if the ParamManager, or anything else
lower-level, needs access to the Song or Clip, it’s right there on the ModelStack. The code
now just “knows” what this stuff is, which | consider to be the way it “should” be: a human
reading / debugging / understanding the code will know what these higher-up objects are, so
why shouldn’t the code also have an intrinsic way to “know”?

This is additionally beneficial because, suppose we decide at some future point that there
needs to be some new object inserted between Songs and Clips - maybe each Clip now
belongs to a ClipGroup. We can now mandate that the addClip() call is only available on a
newly implemented ModelStackWithClipGroup, for which having a ClipGroup is now a
prerequisite. By simply trying to compile the code, the compiler will generate errors, showing
us everywhere that needs to be modified to add a relevant ClipGroup to the ModelStack -
still a bit of a task, but far easier as it will only be functions at higher-up levels that need to
add the ClipGroup, and then we can just take it for granted that it’s there in the ModelStack.
The alternative would be having to modify many functions all the way down the “tree” of the
object / model structure, to accept a ClipGroup as an argument, so that it can be passed
down to the next thing / object.

Another advantage is that error checking can be built into the ModelStack - which may also
be easily switched off for certain builds. For example, there are many instances in the
Deluge codebase where ModelStackWithTimelineCounter::getTimelineCounter() is called -
usually to get the Clip (TimelineCounter is a base class of Clip). We know that the returned
TimelineCounter is not allowed to be NULL. Rather than insert error checking into every

instance of such a call to ensure that it wasn’t passed a NULL, we can instead have
getTimelineCounter() itself perform the check for us and generate an error if need be, all in a
single line of code.

One disadvantage is that some simple function calls on a “leaf” / low-level object such as
AutoParam now require an entire ModelStack to be built up and provided, even if the
function only in fact needed to know about one parent object - e.g. the Clip. However, in
practice, I've observed very few cases where ModelStacks get populated unnecessarily -
especially as ModelStacks are implemented more widely throughout the codebase, so most
functions already have a relevant ModelStack to pass further down the line.

Another potential pitfall - suppose a “leaf” / low-level object - say AutoParam - needs to call a
function on its parent ParamCollection. In this sort of case, which is very common too, the
ModelStack is passed back upwards in the “tree hierarchy”. But now, what if this function in
ParamCollection now needs to do something that requires calling a function on each of its
AutoParams? If it sets the AutoParam on the ModelStack, then the original AutoParam - to
which execution will eventually be returned - is no longer there on the ModelStack, which
may break things and we might not realise as we write the code. Ideally, | wish there was a
solution where we know that so long as the code compiles, we’re not at risk of overwriting
anything on the ModelStack that might be needed. | couldn’t devise a nice solution to this
other than just exercising caution as the programmer. My memory doesn’t quite serve me
here - | experimented with having functions only accept a const ModelStack* (which is now
the case for many of the functions and | can’t quite remember why, sorry!) but this somehow
did not provide a solution for the code to be immune to the pitfall identified above.

I’'m actually not sure how fields like game development deal with similar problems, which
they must encounter as e.g. a “world” might contain many “levels”, which might also contain
many “enemies” - a tree-like structure which the code must have to traverse, like on the
Deluge. | tried Googling it, but couldn’t find anything about a standard approach to this.
Perhaps the each-object-stores-a-pointer-to-its-parent solution, as | mentioned above, is the
norm? If you know, I'd be really interested to know!

SD card audio streaming

Audio streaming (for Samples and AudioClips) from the SD card functions by loading and
caching Clusters of audio data from the SD card. A formatted card will have a cluster size for
the filesystem - often 32kB, but it could be as small as 4kB, or even smaller maybe? The
Deluge deals in these Clusters, whatever size they may be for the card, which makes sense
because one Cluster always exists in one physical place on the SD card (or any disk), so
may be easily loaded in one operation by DMA. Whereas consecutive clusters making up an
(audio) file are often placed in completely different physical locations.

For a Sample associated with a Sound or AudioClip, the Deluge keeps the first two Clusters
of that file (from its set start-point and subject to reversing) permanently loaded in RAM, so
playback of the Sample may begin instantly when the Sound or AudioClip is played. And if
the Sample has a loop-start point, it keeps the first two Clusters from that point permanently
loaded too.

Then as the Sample plays, the currently-playing Cluster and the next one are kept loaded in
RAM. Or rather, as soon as the “play-head” enters a new Cluster, the Deluge immediately
enqueues the following Cluster to be loaded from the card ASAP.

And then also, loaded Clusters remain loaded/cached in RAM for as long as possible while
that RAM isn’t needed for something more important, so they may be played again without
having to reload them from the card. Details on that process below.

Quick note - Cluster objects are also used (in RAM) to store SampleCache data (which
caches Sample data post-repitching or post-pitch-shifting), and “percussive” audio data
(“perc” for short) which is condensed data for use by the time-stretching algorithm. The
reason for these types of data being housed in Cluster objects is largely legacy, but it also is
handy because all Cluster objects are made to be the same size in RAM, so “stealing” one
will always make the right amount of space for another (see below to see what “stealing”
means).

Memory allocation

The Deluge codebase uses a custom memory allocation system, largely necessitated by the
fact that the Deluge’s CPU has 3MB ram, plus the Deluge has an external 64MB SDRAM IC,
and both of these need to have dynamic memory allocation as part of the same system.

The internal RAM on the CPU is a bit faster, so is allocated first when available. But huge
blocks of data like cached Clusters of audio data from the SD card are always placed on the
external RAM IC because they would overwhelm the internal RAM too quickly, preventing
potentially thousands of small objects which need to be accessed all the time from being
placed in that fast internal RAM.

Various objects or pieces of data remain loaded (cached) in RAM even when they are no
longer necessarily needed. The main example of this is audio data in Clusters, discussed
above. The base class for all such objects is Stealable, and as the name suggests, their
memory may usually be “stolen” when needed.

Most Stealables store a “numReasonsToBelLoaded”, which counts how many “things” are
requiring that object to be retained in RAM. E.g. a Cluster of audio data would have a
“reason” to remain loaded in RAM if it is currently being played back. If that numReasons
goes down to 0, then that Stealable object is usually free to have its memory stolen.

Stealables which in fact are eligible to be stolen at a given moment are stored in a queue
which prioritises stealing of the audio data which is less likely to be needed, e.g. if it belongs
to a Song that’s no longer loaded. But, to avoid overcomplication, this queue is not adhered
to in the case where a neighbouring region of memory is chosen for allocation (or itself being
stolen) when the allocation requires that the object in question have its memory stolen too in
order to make up a large enough allocation.

Works in progress, or stuff in an un-ideal state

In many places, a class with a singular object has been used where a namespace would
have made more sense. | (Rohan) was a total C++ noob when | started the Deluge! E.g.
MidiEngine is still a class. A few of these, | have converted to namespaces, such as
AudioEngine.

Various function calls, such as freezeWithError(), still always go through NumericDriver, even
when OLED is used instead.

Various classes, namespaces or files do things seemingly unrelated to their stated purpose
(like PlaybackHandler), or don’t have a clearly enough defined purpose. E.g. what the heck
is View? | promise it used to be an actual thing, in the early days of Deluge development!

In various places, 8-bit or 16-bit ints are used unnecessarily because in the early days of
Deluge development | mistakenly believed that using less bits gave better or faster
performance. But this is almost never the case and sometimes the reverse is even true!
Processors perform best on numbers in their native number of bits - which of course is 32
bits for a 32-bit processor like the Deluge’s Renesas RZ/A1L. But, this code can’t just be
replaced wholesale with the guarantee that it'll function exactly the same - each change
would need to be thought about and tested. So I've only changed these sometimes while
refactoring parts of the code.

From Aria Burrell: Cross-platform build scripts and supported development in other operating
systems and editors are on the horizon. | hope to test and release these changes within a
week of the Open Source launch. They may affect some of the workflows discussed in this
document.

Quirks

For reasons not exactly known, globally declared instances of classes (so, objects) will not
get their constructors called automatically on boot-up as is supposed to happen in C++. This
will immediately cause problems, as things don’t get initialized. And for classes with virtual
functions (i.e. using polymorphism), their vtable won’t even be set, causing an instant crash
as soon as any virtual function is called on them.

This is why, in Deluge.cpp, every single globally declared object gets manually set up with a
“‘new” statement, like new (&instrumentClipView) InstrumentClipView;

See a more technical discussion of that problem here.

https://stackoverflow.com/questions/32807964/c-gcc-file-scope-objects-constructors-arent-being-called?noredirect=1#comment53452782_32807964

