

Roomies Arch & Design

Purpose of Document..1
Systems Diagram.. 2
UI... 2

Design Decisions... 2
Views... 3

FeedView... 3
AppView...3
GroceryWidgetView... 3
PeopleView.. 3

Models... 3
FeedModel...3
AppModel...4
GroceryWidgetModel... 4
PeopleModel..4

Databases..4
Design Decisions... 4
Users... 5
Groups... 5
Grocery List (Shared).. 5
Grocery List (Private)...6

Server.. 7
Design Decisions... 7
Grocery List... 7

Endpoint: Get Shared List..7
Endpoint: Create Shared List Item...8
Endpoint: Delete Shared List Item... 8

Login.. 9
Endpoint: Request to Login..9

Register... 10
Endpoint: Request to Register...10

Feed...10
Endpoint: Request to get feed... 10
Endpoint: Add feed item...11

People..12
ServiceRequest... 12
Announcements...12

1

Purpose of Document
The purpose of this document is to clearly explain the design decisions that are being made to
execute this project. The primary subsystems of this product are the UI, Database, and Server.
In each section, a brief explanation is given as to why design decisions were chosen (Design
Decisions), and then concrete details of those decisions follow. With this document, we will be
able to separate tasks and be clear on what each subsystem is expected to deliver.

Systems Diagram

UI

Design Decisions
●​ Utilizing a multilayered UI we intend to create a user interface that is reliable along with

scalable as more system features are added.
●​ The design pattern simulates a React model-view-presenter framework, consisting of

multiple layers to ensure performance and functionality.
●​ In comparison to the model-view-presenter pattern, due to the size of the application

being small and future iterations being configured in React or other frameworks, we
decided to contain only the view and model layers of the application. For current usage
we feel like this will allow the application to be easily deployed and maintained while
lowering the cost of hours to complete the project.

●​ In the view layer of the application, the customer facing user interface consists of
information, widgets, components that the user will be interacting with. In the model layer
of the application, the deterministic logic from the view layer is defined.

2

●​ This two layer system will allow the user interface and logic to be contained in distinct
structures and aid in future compatibility.

Views

FeedView
●​ This will be the landing page of the app, and will contain a scrollable element of all of the

events that were recently completed by the user or other relevant accounts.

AppView
●​ This view will have a scrollable page of widgets that will take the user to other views. The

widgets that are present can be added/removed according to the user’s liking.

GroceryWidgetView
●​ This is an example of one of the widgetViews we will provide. The main element of this

view is a scrollable list of items on the roommates’ shared grocery list. Any individual in
the group will be able to add/remove from the list with button elements.

PeopleView
●​ In this view, the there will be a scrollable element containing contacts that are relevant to

the user. The user can click on these elements to open up a new view of the contact
page of that individual.

3

Models

FeedModel
●​ Contains the Logic for the various UI actions from the FeedView
●​ Sends a request to the server to get the SQL returned from database
●​ Returned request contains complete list of user notifications
●​ Loads data into the model for the Feed-represented as the various notifications for the

user.
●​ Sends this data to the FeedView

AppModel
●​ Contains the Logic for the various UI actions from the AppView
●​ Sends a request to the server to get the SQL returned from database
●​ Returned request contains complete list of user notifications
●​ Loads data into the model for the Feed-represented as the various notifications for the

user.
●​ Sends this data to the AppView

GroceryWidgetModel
●​ Contains the Logic for the various UI actions from the GroceryStoreWidgetView
●​ Sends a request to the server to get the SQL returned from database
●​ Returned request contains complete list of user notifications
●​ Loads data into the model for the Feed-represented as the various notifications for the

user.
●​ Sends this data to the GroceryWidgetModel

PeopleModel
●​ Contains the Logic for the various UI actions from the PeopleView
●​ Sends a request to the server to get the SQL returned from database
●​ Returned request contains complete list of user notifications
●​ Loads data into the model for the Feed-represented as the various notifications for the

user.
●​ Sends this data to the PeopleView

4

Databases

Design Decisions
●​ Databases will be designed and accessed using MySQL
●​ MySQL offers a secure database management system that is reliable and easy to use.
●​ Along with reliability, MYSQL in comparison to other services is capable of high speeds

and ease of functionality.
●​ MySQL offers multiple packages and usages that allow for users to connect to the

database and perform SQL operations quickly and efficiently
●​ MySQL is compatible with the GOLang environment and is a very suitable choice for

queries in our application including creating users, creating feed items, and creating
roommate groups.

Users

Column Name Data Type Constraints Description

userID VARCHAR(255) PRIMARY_KEY,
UNIQUE

Unique identifier for
the user

groupID VARCHAR(255) SORT_KEY ID of the group the
user belongs to

firstName VARCHAR(255)

lastName VARCHAR(255)

username VARCHAR(255) UNIQUE

password VARCHAR(255)

Groups

Column Name Data Type Constraints Description

groupID VARCHAR(255) PRIMARY_KEY

5

Grocery List (Shared)

Column Name Data Type Constraints Description

itemID INT PRIMARY_KEY,
UNIQUE

Unique item
identifiers

groupID VARCHAR(255) SORT_KEY Unique identifier for
the user

listItem VARCHAR(255) The item in the list
{“light bulbs”)

addedByID VARCHAR(255) ID of the user that
added the item

recurring BOOL Item gets re-added to
list automatically

recurringDate DATETIME When an item should
be added again

timestamp DATETIME Timestamp when
added

Grocery List (Private)

Column Name Data Type Constraints Description

userID VARCHAR(255) PRIMARY_KEY,
UNIQUE

Unique identifier for
the user

listItem VARCHAR(255) The actual item on
the list (ex: lightbulbs)

timestamp DATETIME Timestamp when
added

6

Server

Design Decisions
●​ Have a central http router that every endpoint will be routed through. This allows for a

single go executable to be run on the server.
●​ Each endpoint is represented by a struct containing core logic and DAOs as needed.
●​ Each DAO is implemented following core DAO interfaces and will be updated to connect

to a database when ready. For now, we will have a DAO that gives spoofed data.

Grocery List

Endpoint: Get Shared List
HTTP Method: GET
URL Path: /grocery-list/shared?groupID=”dasfasdf”
Description: Gets all items associated with groupID

Request Parameters(none):

Parameter Location Type Required Description

groupID Query param string yes

Responses:
Array of groceryListItems (see below)

7

Endpoint: Create Shared List Item
HTTP Method: POST
URL Path: /grocery-list/shared/{groupID}
Description: Add a new item

Request Parameters:

Parameter Location Type Required Description

listItem BODY

addedByID BODY

recurring BODY

recurringDate BODY

timestamp BODY

Expected Responses:

Status Code Description

200 Good

400 Error

Endpoint: Delete Shared List Item
HTTP Method: DELETE
URL Path: /grocery-list/shared/{groupID}/{itemID}
Description: Delete an item from grocerylist databases

Request Parameters(none):

Parameter Location Type Required Description

Expected Responses:

Status Code Description

8

200 Good

400 Error

Login

Endpoint: Request to Login
HTTP Method: GET
URL Path: /login
Description: Attempts to login

Request Parameters:

Parameter Location Type Required Description

userName Body string yes

password Body string yes Maybe should
be hashed?

Response:

We probably should do authTokens and stuff, but for now, I’d just say if the login is successful (a
username/password match is found) return a 200, otherwise return a different code and I’ll use
that to log the user in.

Parameter Location Type Required Description

groupID Body string yes The groupID the
user is part of
(created by the
apartment
managers and is
input by the user
at registration)

userID Body string yes The uniqueID of
the user
(generated by
the server at

9

registration)

Register

Endpoint: Request to Register
HTTP Method: GET
URL Path: /register
Description: Attempts to register

Request Parameters:

Parameter Location Type Required Description

userName Body string yes

password Body string yes Maybe should
be hashed?

groupID Body string yes

firstName Body String yes

lastName Body String yes

Response:

When the user registers, the info should be saved to the database, and a new userID should be
generated for the user. GroupID will be provided by the apartment manager and sent in the
request

Parameter Location Type Required Description

userID Body string yes

Feed

Endpoint: Request to get feed
HTTP Method: GET

10

URL Path: /feed?groupID=”sdfklasdf”
Description: Get’s to most recent 20 items for the group’s feed (we can add pagination later we
want but let’s not worry about it for now)

Request Parameters:

Parameter Location Type Required Description

groupID Query param string yes

Response:

An array of Feed Items, that each contain the following

Parameter Location Type Required Description

itemID Body string yes Generated by
the server in the
POST /feed
endpoint

itemText Body string yes Describes the
event that took
place (Ex:
Added eggs to
grocery list)

addedByID Body string yes userID of the
user who added
the item to the
feed

timeStamp Body time.Time yes When the item
was added to
feed

Endpoint: Add feed item
HTTP Method: Post
URL Path: /feed?groupID=”sdfklasdf”
Description: Adds an item to the group’s feed

Request:

11

Parameter Location Type Required Description

groupID Query param string yes

itemText Body string yes Describes the
event that took
place (Ex:
Added eggs to
grocery list)

addedByID Body string yes userID of the
user who added
the item to the
feed

timeStamp Body time.Time yes When the item
was added to
feed

Response:

Parameter Location Type Required Description

People

ServiceRequest
// Probably can just ignore this one for now since we aren’t going to have an admin view

Announcements

12

	Roomies Arch & Design
	
	Purpose of Document
	Systems Diagram
	UI
	Design Decisions
	Views
	FeedView
	AppView
	GroceryWidgetView
	PeopleView

	Models
	FeedModel
	AppModel
	GroceryWidgetModel
	PeopleModel

	Databases
	Design Decisions
	Users
	Groups
	Grocery List (Shared)
	
	Grocery List (Private)

	Server
	
	Design Decisions
	Grocery List
	Endpoint: Get Shared List
	Endpoint: Create Shared List Item
	Endpoint: Delete Shared List Item

	Login
	Endpoint: Request to Login

	Register
	Endpoint: Request to Register

	Feed
	Endpoint: Request to get feed
	Endpoint: Add feed item

	People
	ServiceRequest
	Announcements

