

Proposal: Istio Foundational Mode

Over its almost 6 year history, Istio has amassed quite a wide set of features and configuration
toggles for customizing the behavior of a mesh. However, many of these user touchpoints have
varying feature/supportability statuses, and users who only want to consume production-ready
features must survey all desired features and how they’re represented within the control plane
(i.e. CRD vs. meshConfig vs. env var) as well as develop bespoke enforcement mechanisms
(e.g. gatekeeper, custom validating webhook etc). As such, it is desirable to create a
“foundational mode” for Istio so that users can have confidence that only production ready code
paths will be executed. Furthermore, this new operational profile will provide Istio maintainers
with a way to be opinionated about what features users should be consuming.

Goals
●​ Must be configurable via Helm chart
●​ Must reject/warn on configuration that violates “foundational supportability level” at

runtime
●​ Document surface area for features
●​ Improve feature status hygiene and maintenance burden

○​ foundational mode means we need to get better at promoting features to beta
when they reach that level of maturity

○​ Should be reviewed each release

Prior Art

Kubernetes Feature Lifecycle + Gates
Kubernetes features have a defined lifecycle that they iterate through. All alpha features are
disabled by default, and most Kubernetes providers do not allow a mix between alpha and
non-alpha features within the same cluster. Kubernetes also has many feature gates users can
turn on/off to enable specific features in a given cluster. Note that there are some proposed
changes to this process from Tim Hockin: . Thinking about alpha/beta/GA in k8s (public)

Principles for “foundational mode” inclusion
The following principles are meant to serve as guidelines for whether or not a particular feature
should be included in “foundational mode”. It is strongly encouraged that these principles remain

https://docs.google.com/document/d/1roVAHyF7eWZAccmCKw7MXYUNgx4BCDSXF2IMS8h10oY/edit?resourcekey=0-x6Tw2qz1SpCIPhbec6Qa2A#
https://istio.io/latest/docs/releases/feature-stages/
https://istio.io/latest/docs/releases/feature-stages/#istio-features
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/#feature-stages

immutable once agreed upon by the TOC; however, the way in which these principles are
implemented may change with TOC approval.

1.​ Istio “foundational mode” prioritizes “safety of the user” above all else
a.​ The definition and practical benchmarks for “foundationalty” are malleable, but

generally they should include stability, performance, test coverage, and
developer experience.

2.​ Only features beta and above should be included in foundational mode with exceptions
requiring TOC approval

a.​ Any exception must have an Istio community member as an owner, be sponsored
by a WG lead, and have a clearly documented plan for reaching beta including
an ETA. If that ETA is not met, the owner and WG lead must submit a revised
plan and ETA.

b.​ Features that are exceptions can be removed from foundational mode with a
TOC vote

i.​ In these scenarios, the TOC is encouraged to consider other factors such
as adoption of that feature and overall project health

3.​ There should ideally only be one way to accomplish a task in “foundational mode” and
that way must be at least beta.

a.​ If at any time there exist two “features” in foundational mode that do the same
thing, the TOC should remove one of them. In these scenarios, the most
future-forward feature should be kept

4.​ Any removal of a feature from foundational mode requires advance notice of 4 releases
a.​ Note: foundational-mode removals should not be marketed as “deprecations”.

The TOC is not taking a stance saying that the feature should not be used but
rather that it no longer meets the criteria of being “foundational”

5.​ Any beta feature in foundational mode must have an ETA for reaching stable that is
reviewed by TOC

Intended Audience for “foundational mode”
●​ First time users who need a better “batteries included” experience that leads them

towards best practices
●​ Platform engineers/SREs who are building tools on top of Istio that need relative stability

and future-proofing when it comes to the de-facto APIs and installation methods (e.g.
IstioOperator and Gateway API)

Ambient vs. foundational Mode
Ambient mesh and foundational mode are both initiatives within the Istio project to promote
long-term stability and production-readiness. Ideally, the two initiatives will GA ~the same time

with Ambient being a part of foundational mode along with sidecars as deployment topology
options.

Action Plan
1.​ Ensure feature list is complete
2.​ Create a doc correlating that feature list with the relevant configuration options and

where they live (MeshConfig? CRD? Env var? Binary flag?)
a.​ We should also clarify if there are inherent support levels for different enablement

mechanisms (e.g. env vars are inherently experimental)
b.​ Also, identify features that need promotion to a different mechanism (e.g. move a

setting from an env var to a meshconfig setting or API)
c.​ Will be tackled via https://github.com/istio/enhancements/issues/146
d.​

3.​ Create a design doc for the runtime enforcement mechanism in light of the above
enablement mechanisms

4.​ Create a doc/parent issue for the various installation configuration changes necessary
for foundational mode

a.​ This is where we’ll decide on separate helm chart or not
5.​ Implement

a.​ Install mode without any untested options in the helm chart
b.​ CRD subset (no EnvoyFilter, etc)
c.​ Istiod validations for unsupported features
d.​ Warnings/metrics for existing features in cluster

Proposed Policy Changes
1.​ All env vars are inherently experimental (and should be documented as such)

a.​ If env vars have been defaulted to true for 4 consecutive releases (more? less?),
that env var should be removed

2.​ Something about meshconfig
a.​ It’s not well documented, but meshconfig actually has versioning in istio/api.

There is only a single version (v1alpha1); is there a future where these move to
beta?

Execution options
Foundational Istio is a major change and likely will take a few releases to complete. It is highly
desirable to provide incremental progress and gather early feedback. While “foundational Istio
mode” will focus on beta and stable features - the “foundational Istio” should be considered first

https://istio.io/latest/docs/releases/feature-stages/#istio-features
https://github.com/istio/enhancements/issues/146
https://github.com/istio/api/blob/master/mesh/v1alpha1/config.proto

as an experiment, alpha - and be ready to make changes based on feedback before moving to
beta.

The ‘action plan’ is the long-term requirement, but it can be done iteratively.

A first step could be a trimmed down helm chart that doesn’t allow overrides and only includes
the options that are part of the CI/CD test suite. Istiod would also have a ‘foundational mode’
option that will disable reading the alpha CRDs and restrict what changes in MeshConfig are
loaded, as well as annotations not on the ‘beta’ list.

Defining an install ‘profile’ for istioctl is not ideal - it is desirable to have a single install mode for
‘foundational’, and Helm has better integrations with Terraform and adoption in many tools. We
can avoid divergence from the main Istio chart by making a copy of the unmodified files and just
changing the values.yaml - but the injection templates are full of special cases based on
annotations/pods with minimal testing.

Timeline
Because the 1.18 feature freeze is on 4/11, we’re targeting the 1.19 release to debut Istio
foundational mode.

Intentional Drift

Proposed API surface
Note: this new mode is itself alpha as we refine the criteria and features within it.

Traffic Management
●​ Gateway API: Ingress, Egress, Mesh for all protocols
●​ Protocols: HTTP1.1/HTTP2/gRPC/TCP, Websockets, HBONE
●​ Resilience features: timeouts, retries, connection pools, outlier detection
●​ TLS termination and SNI Support in Gateways
●​ SNI (multiple certs) at ingress
●​ Locality load balancing
●​ Sidecar API
●​ …

Security
●​ PeerAuthentication

○​ STRICT by default
●​ AuthorizationPolicy
●​ Pluggable CA/Cert
●​ Ingress Gateway cert support
●​ Auto-mTLS (via HBONE)
●​ …

Observability
●​ Prometheus Integration
●​ Distributed tracing (sinks tbd)
●​ Trace sampling
●​ …

Other
●​ WorkloadEntry/WorkloadGroup
●​ ServiceEntry/Egress
●​ Basic Helm install options

○​ Repo and tag
○​ Common helm install overrides (CPU, platform-specific, etc)

●​ Istio CNI plugin as default - and initially as the only option (sidecar with elevated
permission is not the foundational option - we may add it later but best to pick the best
option when multiple choices exist)

○​ Note: excludes users running with non-chainable CNI
●​ Multicluster mesh
●​ …

Notable Omissions
●​ Subsets
●​ Envoy filters
●​ VirtualService
●​ Label based routing
●​ MongoDB protocol
●​ ALPN-based auto mTLS
●​ IstioOperator (why is this beta on the features page??)
●​ MCS (for now)

	Proposal: Istio Foundational Mode
	Goals
	Prior Art
	Kubernetes Feature Lifecycle + Gates

	Principles for “foundational mode” inclusion
	Intended Audience for “foundational mode”
	Ambient vs. foundational Mode
	Action Plan
	Proposed Policy Changes
	Execution options

	Timeline
	Intentional Drift
	Proposed API surface
	Traffic Management
	Security
	Observability
	Other
	Notable Omissions

