## Geometry of Gerrymandering Worksheet & Study Guide

| Name                                  | Definition                                                                                                                                                                                           | Formula                                          | Picture |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------|
| Polsby-Popper<br>Compactness<br>Score | Compare the area of the district to a circle with the same perimeter. If the area of the circle is larger than the area of the district, the score is low, which indicates gerrymandering!           | $PP(S) = 4\pi \frac{A}{p^2}$                     |         |
| Schwartzberg<br>Score                 | Create a circle with the same area as the district. Compare the district's perimeter to the circle's perimeter.                                                                                      | $Sch(s) = \frac{C}{P} = \frac{2\sqrt{\pi A}}{P}$ |         |
| Reock Score                           | Create the minimum circle that contains the area of the district. Compare the district's area to the area of the circle.                                                                             | $R(S) = \frac{A}{A_{MC}}$                        |         |
| Convex Hull<br>Measure                | Create the smallest shape containing the district in which any two points can be connected by a line segment that stays in the region. Compare the district's area to the area of the created shape. | $CH(S) = \frac{A}{A_{CH}}$                       |         |

| Length-Width<br>Score | Create the minimum bounding rectangle that contains the district. Compare the length of the rectangle to the width of the rectangle.                                                          | $LW(S) = \frac{W}{L}$  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| X-Symmetry            | Flip a district across the horizontal line running through the middle of it. Compare the overlapping area between the district and the flipped version and the original area of the district. | $X(S) = \frac{A_o}{A}$ |  |