In this assignment, you will improve your understanding of SMoL using the output from the
Stacker. In every case, you will be shown a trace configuration and asked to perform some
interpretive task. You are welcome to run the Stacker yourself if it will help you construct
answers.

In this assignment, we will have two kinds of activities:

1. Given a configuration, construct a program that could have produced that trace. Ideally
we want an exact match (except, of course, for the random addresses and line numbers),
but get as close as you can.

2. Given a configuration, determine the value of the program from the trace.

For all programs, assume that the program contained a function called pause that had been
defined in the program as follows:

(deffun (pause) 0)

(The following programs are intentionally written to only use additive arithmetic, so that the
result of pause will not affect the result.) Imagine that the call to pause is about to finish at the
point where the configuration was captured.


https://smol-tutor.xyz/stacker/

Conhguration = Program

In this portion, we will show you two Stacker trace configurations. For each one, you should
write a program that, when run, will result in this configuration.

In each problem, the “Returning 0” and the bottommost environment are from pause. You
should include pause and its definition in the programs that you construct.

As you might have guessed, infinitely many programs could have produced each configuration.
Therefore, there is not only one “correct” answer. We do ask that you try to produce a reasonably
minimal solution and avoid flights of fancy. If you really want to get clever, then also include a
simple solution!

(There are two problems, one each on the two successive pages.)



1.

Stack & Current Task Environments

B pause
@605

in environment @top-level

aprimordial-env

Waiting for a value
in context (+ * x)
in environment @713

Waiting for a value
in context (+ * y)
in environment @4617

yb 6

Returning @

(We hide the “Heap-allocated Values” column from the screenshot)



2.

Stack & Current Task Environments Heap-allocated Values

. atop-level @735, a function
Waiting for a value ’
S pause > atline 1:1 to 1:19

in context * . .
in environment @top-level vie @ with environment @top-level
v2

aprimordial-env

Returning [



Conhguration — Value

In this part, we will show you two configurations and ask you to determine what value the
program will produce. Recall that pause is designed to not impact the answer.

In your response, as your school math teachers used to say, “show your work”. Don’t just give us
the answer (a number) but give us a sense of how you arrived at it. You don’t have to be very
verbose, just enough to confirm that you understand the mapping from configurations to
program results.

(There are two problems, one each on the two successive pages.)



3.
Stack & Current Task Environments

pause i @735

4

atop-level

Returning @

atop-level




4.

Stack & Current Task Environments

pause @735

aprimordial-env
(+ = x)

a4617

atop-level
a3504

x) atop-level
a397

atop-level

Returning &

atop-level

X
atop-level

atop-level




	Configuration → Program 
	 
	Configuration → Value 

