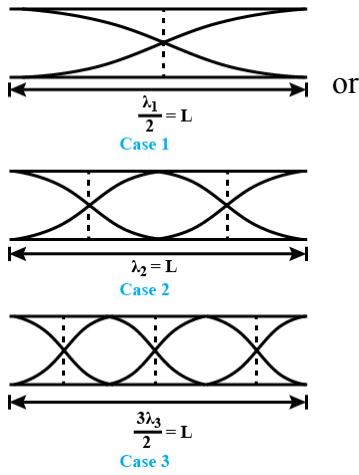
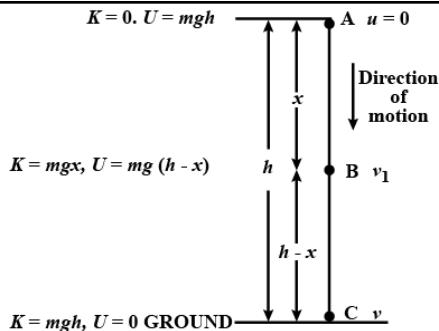


SESSION ENEDING EXAM 2024-25


CLASS XI PHYSICS

MODEL ANSWER SHEET


	SECTION A (MULTIPLE CHOICE QUESTIONS)	MARKS
1.	(a) Moment of inertia and moment of force	1
2.	(d) 1:16	1
3.	<p>(c)</p>	1
4.	(d) 90°	1
5.	(d) not changed	1
6.	(a) $\vec{F} \cdot \vec{v}$	1
7.	(c)(2,2)	1
8.	(d) $4F$	1
9.	(c) 90°	1
10.	(b) -10°C	1
11.	(d) $1 + \frac{2}{f}$	1
12.	(b) $T/\sqrt{2}$	1
	ASSERTION-REASON QUESTIONS	
13.	(c) Assertion is true but Reason is false	1
14.	(a) Both Assertion and Reason are true and Reason is the correct explanation of Assertion	1
15.	(a) Both Assertion and Reason are true and Reason is the correct explanation of Assertion	1
16.	(d) Both Assertion and Reason are false	1
	SECTION B (2 MARKS QUESTIONS)	
17.	<p>(i) At a height $h \gg R$, $g' = g \left(1 + \frac{h}{R}\right)^{-2}$</p> <p>(ii) At a depth d, $g' = g \left(1 - \frac{d}{R}\right)$</p>	<p>1/2</p> <p>1/2</p> <p>1</p>
18.	<p>Using dimensions,</p> $\eta \propto P^a A^b T^c$ $\eta = k P^a A^b T^c$ <p>Putting dimensions</p> $[ML^{-1}T^{-1}] = k [MLT^{-1}]^a [L^2]^b [T]^c$ $[ML^{-1}T^{-1}] = k [M]^a [L]^{a+2b} [T]^{-a+c}$ <p>On comparing the powers of M, L and T</p>	1

	$a = 1, a + 2b = -1, -a + c = -1$ On solving $a = 1, b = -1, c = 0$ Therefore, $\eta = k P^1 A^{-1} T^0$	1/2 1/2
19.	Given, $x = 4t^2 - 15t + 25$ Instantaneous velocity, $v = \frac{dx}{dt} = 8t - 15$ At $t = 0$ s, $v = -15$ m/s Instantaneous acceleration, $a = \frac{dv}{dt} = 8$ At $t = 0$ s, $a = 8$ m/s ² Acceleration is constant throughout the motion. OR	1/2 1/2 1/2 1/2
		1/2(graph)
	The v-t graph for accelerated motion is shown $\text{Area of v-t graph} = \text{area of triangle} + \text{area of rectangle}$ $= \frac{1}{2} \times t \times (v-u) + u \times t$ $= \frac{1}{2}t(at) + ut \quad (\text{since } v = u + at)$ Therefore, area of v-t graph = $ut + \frac{1}{2}at^2$ But area under v-t graph = displacement s Therefore, $s = ut + \frac{1}{2}at^2$ Hence proved.	1/2 1/2 1/2 1/2
20.	No, Hollow sphere will have greater moment of inertia as mass is distributed away from the axis of rotation.	1/2 1 1/2
21.	RMS velocity of hydrogen molecule, $v_{H_2} = \sqrt{\frac{3kT_H}{m_H}}$ RMS velocity of oxygen molecule, $v_{O_2} = \sqrt{\frac{3kT_O}{m_O}}$ Given that $v_{H_2} = v_{O_2}, T_O = 47^\circ\text{C} + 273 = 320 \text{ K}, m_H = 2, m_O = 32$ Therefore, $\frac{T_H}{m_H} = \frac{T_O}{m_O}$ $T_H = \frac{T_O}{m_O} m_H = \frac{320 \times 2}{32} = 20 \text{ K}$	1/2 1/2 1/2 1/2

22.	<p>Banking of roads: Raising of outer edge of the road a little above the inner edge in hilly areas. It is done to provide the necessary centripetal force for a vehicle to move with a reasonable speed without skidding.</p>	1 1/2 1/2 (fig.) 1/2 1/2
23.	<p>We have, $\vec{L} = \vec{r} \times \vec{p}$ Differentiating wrt t $\frac{d\vec{L}}{dt} = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \frac{d\vec{p}}{dt}$ $= \vec{v} \times \vec{m}v + \vec{r} \times \vec{F}$ $= 0 + \vec{\tau}$ $\vec{\tau} = \frac{d\vec{L}}{dt}$</p>	1/2 1 1 1/2
24.	<p>Escape velocity: The velocity required by a body to be projected from the surface of the Earth so as to overcome the gravitational pull of the Earth. The percentage increase in the orbital velocity of moon required to escape the gravitational pull of the Earth</p> $\frac{v_e - v_o}{v_o} \times 100 = \frac{\sqrt{2gR} - \sqrt{gR}}{\sqrt{gR}} \times 100$ $= (\sqrt{2} - 1) \times 100 = (1.414 - 1) \times 100 = 41.4 \% \approx 42\%$ <p style="text-align: center;">OR</p> <p>(i) Kepler's third law of periods: The square of time period of revolution of a planet is directly proportional to the cube of semi-major axis of the elliptical orbit. $T^2 \propto R^3$</p> <p>(ii) The orbital velocity of satellite $v_0 = \sqrt{\frac{GM}{R+H}}$, Hence, lesser the height, greater will be the velocity of the satellite. So, satellite at a height H_1 will have more velocity.</p>	1 1 1 1 1 1 1 1

25.	<p>(a) brass is a good conductor of heat, it readily transfers heat away from your body when you touch it, while wood is a poor conductor, so very little heat is transferred from your hand to the wood.</p> <p>(b) the lower layers of the earth's atmosphere reflect infrared radiations(heat) from earth back to the surface of the earth; thus the heat radiation received by the earth from the sun during the day are kept trapped by the atmosphere.</p> <p>(c) because steam contains more heat compared to hot water.</p>	1 1 1
26.	$F = mg = 50 \text{ kg} \times 9.8 \text{ ms}^{-2} = 490 \text{ N}$ Use Hooke's law $F = kx$ $490 = k \times 0.20$ $K = 2450 \text{ N/m}$	1 1 1
27.	$y(x,t) = 10 \sin 2\pi(t - 0.005x)$ Comparing with $y = A \sin(\omega t - kx)$ (i) $k = \frac{2\pi}{\lambda} = 2\pi \times 0.005, \lambda = 1/0.005 = 200 \text{ cm}$ (ii) $\omega = 2\pi\nu = 2\pi, \nu = 1 \text{ Hz}$ (iii) $V = \nu \lambda = 1 \times 200 = 200 \text{ cm/s}$	1 1 1
28.	<p>Open organ pipe:</p> <p>We have $\lambda = \frac{2L}{n}$</p> <p>First mode of vibration: $n = 1, \lambda = \lambda_1, \lambda_1 = 2L, L = \lambda_1/2$</p> <p>Frequency $\nu_1 = \frac{v}{\lambda_1} = \frac{1}{2L} \sqrt{\frac{\gamma P}{\rho}} = \text{fundamental frequency}$</p> <p>first harmonic</p> <p>Second mode of vibration: $n = 2, \lambda = \lambda_2, \lambda_2 = L, L = \lambda_2/2$</p> <p>Frequency $\nu_2 = \frac{v}{\lambda_2} = \frac{1}{L} \sqrt{\frac{\gamma P}{\rho}} = 2\nu_1 \text{ second harmonic}$</p> <p>Third mode of vibration: $n = 3, \lambda = \lambda_3, \lambda_3 = 2L/3, L = 3\lambda_3/2$</p> <p>Frequency $\nu_3 = \frac{v}{\lambda_3} = \frac{3}{2L} \sqrt{\frac{\gamma P}{\rho}} = 3\nu_1 \text{ third harmonic}$</p> <p>Hence, $\nu_1 : \nu_2 : \nu_3 = 1 : 2 : 3$</p> <p>Hence proved</p>	
29.	SECTION D (CASE-STUDY BASED QUESTION 4 MARKS)	
(i)	(b) in the absence of an external force	1

1

At point A,

$$\text{P.E.} = mgh, \text{K.E.} = 0$$

$$\text{T.E.} = \text{P.E.} + \text{K.E.} = mgh \dots \dots \dots (1)$$

At point B,

$$\text{P.E.} = mg(h-x), \text{K.E.} = \frac{1}{2} m v^2$$

$$\text{Using } v^2 = u^2 + 2gx$$

$$v^2 = 0 + 2gx$$

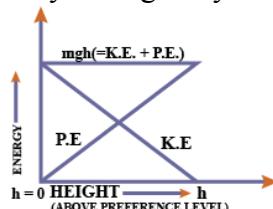
$$\text{K.E.} = \frac{1}{2} m (2gx) = mgx$$

$$\text{T.E.} = mg(h-x) + mgx = mgh \dots \dots \dots (2)$$

At point C

$$\text{P.E.} = 0$$

$$\text{K.E.} = \frac{1}{2} m V^2$$

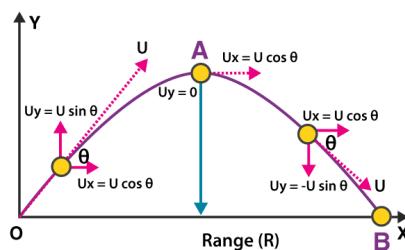

$$\text{Using } V^2 = u^2 + 2gh$$

$$V^2 = 2gH$$

$$\text{K.E.} = \frac{1}{2} m (2gh) = mgh$$

$$\text{T.E.} = mgh \dots \dots \dots (3)$$

Hence, mechanical energy of a freely falling body remains conserved.



1

1

31. **Projectile:** A body which when thrown moves under the effect of gravity alone.

1/2

1/2
(fig.)

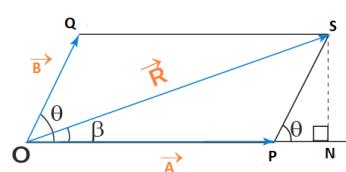
For motion along X-axis

$$u_x = u \cos \theta, a_x = 0$$

$$\text{using } S_x = u_x t + \frac{1}{2} a_x t^2$$

$$x = (u \cos \theta)t \dots \dots \dots (1)$$

1/2


For motion along Y-axis

$$u_y = u \sin \theta, a_y = -g$$

$$\text{Using } S_y = u_y t + \frac{1}{2} a_y t^2$$

$$y = u \sin \theta t - \frac{1}{2} gt^2 \dots \dots \dots (2)$$

1/2

Putting the value of t from (1) in (2)	1/2
$y = u \sin \theta \frac{x}{u \cos \theta} - \frac{1}{2} g \left(\frac{x}{u \cos \theta} \right)^2$	
$y = x \tan \theta - \frac{1}{2} g \frac{x^2}{u^2 \cos^2 \theta}$	1/2
Since, $y \propto x^2$	
hence, the motion of projectile is parabolic.	1/2
Range $R = \frac{u^2 \sin 2\theta}{g}$,	1/2
Maximum height attained $H_{\max} = \frac{u^2 \sin^2 \theta}{2g}$	
For equal range and maximum height, $R = H_{\max}$	
$\frac{u^2 \sin 2\theta}{g} = \frac{u^2 \sin^2 \theta}{2g}$	1
$2 \sin \theta \cos \theta = \sin^2 \theta / 2$	
$\tan \theta = 4$	
$\theta = \tan^{-1} 4 \approx 75.96^\circ$	
OR	
Parallelogram law of vector addition- "If two co-initial vectors can be represented in magnitude and direction by the two adjacent sides of a parallelogram, then their resultant will be represented completely in magnitude and direction by the diagonal of that parallelogram".	1/2(fig.)
	1/2
Construction- Draw a perpendicular from S to OP produced.	1/2
From right angled triangle SNP,	
$\frac{SN}{PS} = \sin \theta$ or $SN = PS \sin \theta = B \sin \theta$	1/2
$\frac{PN}{PS} = \cos \theta$ or $PN = PS \cos \theta = B \cos \theta$	1/2
Using Pythagoras theorem in right angled triangle ONS,	1/2
$OS^2 = ON^2 + SN^2 = (OP + PN)^2 + SN^2$	
Or $R^2 = (A + B \cos \theta)^2 + (B \sin \theta)^2$	
$= A^2 + B^2 (\cos^2 \theta + \sin^2 \theta) + 2AB \cos \theta$	
$= A^2 + B^2 + 2AB \cos \theta$	1/2
Or $R = \sqrt{A^2 + B^2 + 2AB \cos \theta}$	1/2
$R^2 = A^2 + B^2 + 2AB \cos \theta$	1/2
Given $A = B = x$, $R^2 = 3AB = 3x^2$	1/2
$R^2 = x^2 + x^2 + 2x^2 \cos \theta = 2x^2 (1 + \cos \theta)$	1/2
$3x^2 = 2x^2 (1 + \cos \theta)$	1/2
$1 + \cos \theta = 3/2$	1/2
$\cos \theta = 1/2, \theta = 60^\circ$	

