

Zeal Файл проекта Код

Настройка проекта
 Config/db.php 'class' => 'yii\db\Connection',

 'dsn' => 'mysql:host=localhost;dbname=yiiapp2',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',

 Config/web.php 8 строка
'language'=>'ru-RU',

18 строка
 'cookieValidationKey' => 'randomstring',

71 строка
 'allowedIPs' => ['*'],

19 строка
'baseUrl'=>'',

48-54 раскомментировать
'urlManager' => [
 'enablePrettyUrl' => true,
 'showScriptName' => false,
 'rules' => [
],
],

 Из папки web скопировать .htaccess
в корень проекта
В скопированном файле заменить

RewriteEngine On
RewriteRule ^(.*)$ web/$1

Создание миграций
ВАЖНО!!! Создавать миграции в логическом порядке – сначала таблицы с первичным ключевым полем, а только ПОТОМ таблицы с внешним ключом и связи!!!
Если миграция не получается, так как нарушен порядок, то сначала нужно переименовать файлы миграции, чтобы они шли по порядку, а затем внутри каждой

миграции ИМЯ ФАЙЛА==ИМЯ МИГРАЦИИ
 php yii migrate/create create_role_table public function safeUp()

 {
 $this->createTable('{{%role}}', [
 'id' => $this->primaryKey(),
 'code' => $this->string()->unique()->notNull(),
 'name' => $this->string()->notNull(),
]);

 $this->insert('{{%role}}', [
 'code' => 'user', 'name' => 'Зарегистрированный пользователь',
]);

 $this->insert('{{%role}}', [
 'code' => 'admin', 'name' => 'Администратор'
]);
 }

Guides/database migration php yii migrate/create create_user_table
отредактировать файл миграции в

папке migration

public function safeUp()
 {
 $this->createTable('{{%user}}', [
 'id' => $this->primaryKey(),
 'name' => $this->string()->notNull(),
 'surname' => $this->string()->notNull(),
 'patronymic' => $this->string()->null(),
 'username' => $this->string()->unique()->notNull(),
 'email' => $this->string()->unique()->notNull(),
 'password' => $this->string()->notNull(),
 'role_id' => $this->integer()->defaultValue(1),
]);
 $this->createIndex(
 'idx-user-role_id',
 'user',
 'role_id'
);
 $this->addForeignKey(
 'fk-user-role_id',
 'user',
 'role_id',

 'role',
 'id',
 'CASCADE'
);
 $this->insert('{{%user}}', [
 'name' => 'Иванов',
 'surname' => 'Иван',
 'patronymic' => 'Иванович',
 'username' => 'admin',
 'email' => 'admin@admin.ru',
 'password' => md5('admin00'),
 'role_id' => 2,
]);
 }

 php yii migrate/create

create_category_table

 public function safeUp()
 {
 $this->createTable('{{%category}}', [
 'id' => $this->primaryKey(),
 'name' => $this->string()->notNull(),
]);

 $this->insert('{{%category}}', [
 'name' => 'Лазерные принтеры',
]);

 $this->insert('{{%category}}', [
 'name' => 'Струйные принтеры',
]);

 $this->insert('{{%category}}', [
 'name' => 'Термопринтеры',
]);
 }

 php yii migrate/create
create_product_table

public function safeUp()
 {
 $this->createTable('{{%product}}', [

 'id' => $this->primaryKey(),
 'date' => $this->timestamp(),
 'name' => $this->string()->notNull(),
 'file' => $this->string()->null(),
 'count' => $this->integer()->defaultValue(0),
 'price' => $this->decimal()->defaultValue(0),
 'year' => $this->integer()->defaultValue(2023),
 'model' => $this->string()->null(),
 'country' => $this->string()->null(),
 'category_id' => $this->integer()->defaultValue(1),
]);
 $this->createIndex(
 'idx-product-category_id',
 'product',
 'category_id'
);
 $this->addForeignKey(
 'fk-product-category_id',
 'product',
 'category_id',
 'category',
 'id',
 'CASCADE'
);
 $this->insert('{{%product}}', [
 'name' => 'Принтер 1',
 'count' => 10,
]);
 $this->insert('{{%product}}', [
 'name' => 'Принтер 2',
 'count' => 5,
]);
 $this->insert('{{%product}}', [
 'name' => 'Принтер 3',
 'count' => 50,
]);
 }

 php yii migrate/create
create_status_table

public function safeUp()
 {
 $this->createTable('{{%status}}', [
 'id' => $this->primaryKey(),
 'code' => $this->string()->unique()->notNull(),
 'name' => $this->string()->notNull(),
]);

 $this->insert('{{%status}}', [
 'name' => 'Новый',
 'code' => 'new',
]);

 $this->insert('{{%status}}', [
 'name' => 'Подтвержденный',
 'code' => 'confirm',
]);

 $this->insert('{{%status}}', [
 'name' => 'Отклоненный',
 'code' => 'rejected',
]);
 }

 php yii migrate/create
create_order_table

public function safeUp()
 {
 $this->createTable('{{%order}}', [
 'id' => $this->primaryKey(),
 'date' => $this->timestamp(),
 'user_id' => $this->integer()->notNull(),
 'status_id' => $this->integer()->notNull()->defaultValue(1),
 'rejection_reason' => $this->text()->null(),
]);

 $this->createIndex(
 'idx-order-user_id',
 'order',
 'user_id'

);

 $this->addForeignKey(
 'fk-order-user_id',
 'order',
 'user_id',
 'user',
 'id',
 'CASCADE'
);

 $this->createIndex(
 'idx-order-status_id',
 'order',
 'status_id'
);

 $this->addForeignKey(
 'fk-order-status_id',
 'order',
 'status_id',
 'status',
 'id',
 'CASCADE'
);
 }

 php yii migrate/create
create_product_order_table

public function safeUp()
 {
 $this->createTable('{{%product_order}}', [
 'id' => $this->primaryKey(),
 'order_id' => $this->integer()->notNull(),
 'product_id' => $this->integer()->notNull(),
 'count' => $this->integer()->notNull()->defaultValue(1),
 'price' => $this->integer()->notNull()->defaultValue(0),
]);

 $this->createIndex(

 'idx-product_order-order_id',
 'product_order',
 'order_id'
);

 $this->addForeignKey(
 'fk-product_order-order_id',
 'product_order',
 'order_id',
 'order',
 'id',
 'CASCADE'
);

 $this->createIndex(
 'idx-product_order-product_id',
 'product_order',
 'product_id'
);

 $this->addForeignKey(
 'fk-product_order-product_id',
 'product_order',
 'product_id',
 'product',
 'id',
 'CASCADE'
);
 }

 php yii migrate/create create_cart_table

public function safeUp()
 {
 $this->createTable('{{%cart}}', [
 'id' => $this->primaryKey(),
 'user_id' => $this->integer()->notNull(),
 'product_id' => $this->integer()->notNull(),
 'count' => $this->integer()->notNull()->defaultValue(1),
]);

 $this->createIndex(
 'idx-cart-user_id',
 'cart',
 'user_id'
);

 $this->addForeignKey(
 'fk-cart-user_id',
 'cart',
 'user_id',
 'user',
 'id',
 'CASCADE'
);

 $this->createIndex(
 'idx-cart-product_id',
 'cart',
 'product_id'
);

 $this->addForeignKey(
 'fk-cart-product_id',
 'cart',
 'product_id',
 'product',
 'id',
 'CASCADE'
);
 }

 Php yii migrate

Создание моделей
 http://yiiapp2/gii

Model Creation

http://yiiapp2/gii

Database Connection: db
Table Name: *

Авторизация
Guides/Authentification
Импортировать интерфейс
IdentityInterface к классу
ActiveRecord
use yii\web\IdentityInterface;

class User extends ActiveRecord
implements IdentityInterface

Models/User.php

use yii\web\IdentityInterface;

class User extends \yii\db\ActiveRecord implements IdentityInterface

Guides/Authentification (2 статья)
Скопировать функции,
поставить заглучшки
public static function
findIdentityByAccessToken($token,
$type = null)

public function getAuthKey()

public function
validateAuthKey($authKey)

Models/User.php

Models/UserOld.php
Скопировать функции

 public static function findIdentity($id)
 {
 return static::findOne($id);
 }

 public static function findIdentityByAccessToken($token, $type = null)
 {
 return null;
 }

 public function getId()
 {
 return $this->id;
 }

 public function getAuthKey()
 {
 return null;
 }

 public function validateAuthKey($authKey)
 {
 return false;
 }

public function validatePassword($password)
 {
 return $this->password === md5($password);
 }

 public function isAdmin() {
 return $this->role->code ==='admin';
 }

Guides/Authentification (2 статья)
public function beforeSave($insert)
 {
 if (parent::beforeSave($insert)) {
 if ($this->isNewRecord) {
 $this->auth_key =
\Yii::$app->security->generateRando
mString();
 }
 return true;
 }
 return false;

 }

Models/UserOld.php
Скопировать функции

public function beforeSave($insert)
 {
 $this->password= md5($this->password);
 return parent::beforeSave($insert);
 }

 Русифицировать ссылку на
страницу входа (файл
views/layouts/main.php):

 Yii::$app->user->isGuest
 ? ['label' => 'Вход', 'url' => ['/site/login']]
 : '<li class="nav-item">'
 . Html::beginForm(['/site/logout'])
 . Html::submitButton(
 'Выход (' . Yii::$app->user->identity->username . ')',
 ['class' => 'nav-link btn btn-link logout']
)
 . Html::endForm()
 . ''
]
]);

 Привести подписи к форме
авторизации в файле
models/LoginForm.php в соответствии
с заданием

 public function validatePassword($attribute, $params)
 {
 if (!$this->hasErrors()) {
 $user = $this->getUser();

 if (!$user || !$user->validatePassword($this->password)) {
 $this->addError($attribute, 'Неверный логин или пароль');
 }
 }
 }

 public function attributeLabels()
 {
 return [
 'username' => ‘login’,
 'password' => ‘password’,
 'rememberMe' => 'Запомнить в системе',
];
 }

 Русифицировать подписи на
странице авторизации в файле
views/site/login.php:

$this->title = 'Вход';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="site-login">
 <h1><?= Html::encode($this->title) ?></h1>

Регистрация
 Перейти в кодогенератор Gii(адрес

вида login-m1.wsr.ru/gii) и
сгенерировать CRUD для модели
User:

Grud Generator
Model Class : app\model\User

Controller Class:
App\controller\UserController

Проверяем hаботу функции сохранения нового пользователя beforeSave

Для этого в файле models/User.php нужно переопределить метод beforeSave:

public function beforeSave($insert) {
 $this -> password = md5($this-> password);
 return parent::beforeSave($insert);
 }

 Зарегистрировать нового
пользователя user/createю
Проверить новой записи в базе
данных.
Отредактировать форму в
соответствии с заданием
1.​

файл views/user/_form.php убрав лишние поля (нельзя дать пользователю менять роль,
добавить поле повторения пароля и знакомства с правилами- их нет в базе данных):
<div class="user-form">
 <?php $form = ActiveForm::begin(); ?>
 <?= $form->field($model, 'name')->textInput(['maxlength' => true]) ?>
 <?= $form->field($model, 'surname')->textInput(['maxlength' => true]) ?>
 <?= $form->field($model, 'patronymic')->textInput(['maxlength' => true]) ?>
 <?= $form->field($model, 'username', ['enableAjaxValidation' => true])->textInput(['maxlength' =>
true]) ?>
 <?= $form->field($model, 'email')->textInput(['maxlength' => true]) ?>
 <?= $form->field($model, 'password')->passwordInput(['maxlength' => true]) ?>
 <?= $form->field($model, 'password_repeat')->passwordInput(['maxlength' => true]) ?>
 <?= $form->field($model, 'rules')->checkbox() ?>
 <div class="form-group">
 <?= Html::submitButton('Save', ['class' => 'btn btn-success']) ?>
 </div>
 <?php ActiveForm::end(); ?>
</div>

 Настроить ссылки и

перенаправления
Сделать переход по правильной ссылке в views/layouts/main.php

['label' => 'Регистрация', 'url' => ['/user/create'], 'visible'=>Yii::$app->user->isGuest],
 Настроить, чтобы после регистрации пользователь переходил на страницу авторизации
при успешной регистрации в файле controllers/UserController.php, правил метод actionCreate
if ($this->request->isPost) {
 if ($model->load($this->request->post()) && $model->save()) {
 return $this->redirect(['site/login']);
 }
 По заданию при выходе пользователь переходит на страницу О нас
в SiteController в метод actionLogout вместо return Home() на
 return $this->redirect(['site/about']);

 Валидация формы регистрации
 Нужно в модель User Добавть

новые параметры
Model/User.php и там создаем два свойства
public $password_repeat;
 public $rules;

Zeal=Guides-Core Validator Статья
match
[
 // checks if "username" starts with
a letter and contains only word
characters
 ['username', 'match', 'pattern' =>
'/^[a-z]\w*$/i']
]

compare
[
 // validates if the value of
"password" attribute equals to that
of "password_repeat"
 ['password', 'compare'],

 // same as above but with
explicitly specifying the attribute to
compare with
 ['password', 'compare',
'compareAttribute' =>
'password_repeat'],

 // validates if age is greater than or
equal to 30
 ['age', 'compare', 'compareValue'
=> 30, 'operator' => '>=', 'type' =>
'number'],
]

name – обязательное поле,
разрешенные символы (кириллица,
пробел и тире);
surname – обязательное поле,
разрешенные символы (кириллица,
пробел и тире);
patronymic – не обязательное поле,
разрешенные символы (кириллица,
пробел и тире);
login – обязательное и уникальное
поле, разрешенные символы
(латиница, цифры и тире);
password – обязательное поле, не
менее 6-ти символов;
password_repeat – обязательное
поле, должно совпадать с полем
password;
rules - согласие с правилами
регистрации.

 [['name', 'surname', 'username'], 'match', 'pattern' => '/^[а-яА-Я0-9-]*$/u','message'=>'Только
буквы кирилицы'],

['username', 'match', 'pattern' => '/^[a-zA-Z0-9-]*$/i','message'=>'Только латиница'],

[['password'],'string', 'min' => 6],

 ['password_repeat', 'compare', 'compareAttribute' => 'password'],
 ['rules','compare','compareValue' => 1,'message'=>'Примите условия регистрации'],

 Привести форму в соответствии с
требованиями к заданию:
Проверка пароля
Согласие с обработкой
персональных данных

<div class="user-form">
 <?php $form = ActiveForm::begin(); ?>
 <?= $form->field($model, 'name')->textInput(['maxlength' => true]) ?>
 <?= $form->field($model, 'surname')->textInput(['maxlength' => true]) ?>
 <?= $form->field($model, 'patronymic')->textInput(['maxlength' => true]) ?>

Добавить недостающие поля в
представление формы регистрации
в файле views/user/_form.php

 <?= $form->field($model, 'username', ['enableAjaxValidation' => true])->textInput(['maxlength' =>
true]) ?>

 <?= $form->field($model, 'email')->textInput(['maxlength' => true]) ?>
 <?= $form->field($model, 'password')->passwordInput(['maxlength' => true]) ?>
 <?= $form->field($model, 'password_repeat')->passwordInput(['maxlength' => true]) ?>
 <?= $form->field($model, 'rules')->checkbox() ?>
 <div class="form-group">
 <?= Html::submitButton('Save', ['class' => 'btn btn-success']) ?>
 </div>
 <?php ActiveForm::end(); ?>
</div>

 Организация доступа для
авторизированного доступа

Заходим в UserController и добавим
правила

 return array_merge(
 parent::behaviors(),
 [
 'access' => [
 'class' => AccessControl::class,
 'only' => ['create'],
 'rules' => [
 [
 'actions' => ['create'],
 'allow' => true,
 'roles' => ['?'],
],
],
],
 'verbs' => [
 'class' => VerbFilter::className(),
 'actions' => [
 'delete' => ['POST'],
],
],
]
);

 Импортировать
use yii\filters\AccessControl;

 Для гостей сделать видимой ссылку

на регистрацию
Зайдем в views/layouts/main.php и
настроим свойство visible

 ['label' => 'Регистрация', 'url' => ['/user/create'], 'visible'=>Yii::$app->user->isGuest],

Создание корзины
 Перейти в кодогенератор Gii(адрес

вида login-m1.wsr.ru/gii) и
сгенерировать CRUD для модели
Cart:

Grud Generator
Model Class : app\models\Cart

Controller Class:
App\controllers\CartsController

Сделать так, чтобы доступ в корзину имел только зарегистрированный пользователь.
1.​ Из файла controllers/SiteController.php скопировать правила доступа к методу
logout (только для авторизированного пользователя) в файл controllers/CartController.php:
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::class,
 'only' => ['logout'],
 'rules' => [
 [
 'actions' => ['logout'],
 'allow' => true,
 'roles' => ['@'],
],
],
],
 'verbs' => [
 'class' => VerbFilter::class,
 'actions' => [
 'logout' => ['post'],
],
],
];
 }

Zeal – статья Working with Data
Keys из Data Providers:

Сделать так, чтобы для каждого
пользователя отображалась
корзина только с его товарами

В методе index в файле controllers/CartController.php добавить условие поиска товаров в
корзине только для текущего пользователя
public function actionIndex()
 {

 $dataProvider = new ActiveDataProvider([
 'query' => Cart::find()->where(['user_id' => \Yii::$app->user->identity->id]),
 /*
 'pagination' => [
 'pageSize' => 50
],
 'sort' => [
 'defaultOrder' => [
 'id' => SORT_DESC,
]
],
 */
]);

 return $this->render('index', [
 'dataProvider' => $dataProvider,
]);
 }

НЕ ЗАБЫТЬ ИМПОРТИРОВАТЬ классы
use yii\filters\AccessControl;
use yii\data\ActiveDataProvider;
use Yii;

Используя код из Zeal статьи
Data Widgets раздел Data column
отредактировать вид корзины
пользователя:

Структуру корзины сделать
согласно заданию:
Сделать столбики наименование
товара, количество и кнопки
управления количеством товара
(добавление, удаление)

Views/cart/index.php
 <?= GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],

 'product.name',
 'count',
 [
 'format' => 'raw',
 'value' => function ($data) {
 return "<button onclick='addCart($data->product_id)' class='btn
btn-success'>+</button>
 <button onclick='removeCart($data->product_id)' class='btn btn-success'>-</button>";

 },
],

],
]); ?>

 <?php

use app\models\Cart;
use yii\helpers\Html;
use yii\helpers\Url;
use yii\grid\ActionColumn;
use yii\grid\GridView;
use yii\widgets\Pjax;

/** @var yii\web\View $this */
/** @var yii\data\ActiveDataProvider $dataProvider */

$this->title = 'Корзина';
$this->params['breadcrumbs'][] = $this->title;
$this->registerJsFile(
 '@web/js/main.js',
 ['depends' => [\yii\web\JqueryAsset::class]]
);

?>
<div class="cart-index">

 <h1><?= Html::encode($this->title) ?></h1>
 <div class="info alert alert-primary"></div>
 <?php Pjax::begin(['id'=>'cart']) ?>
 <?= GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],
 'product.name',
 'count',
 [
 'format' => 'raw',

 'value' => function ($data) {
 return "<button onclick='addCart($data->product_id)' class='btn btn-success'>+</button>
 <button onclick='removeCart($data->product_id)' class='btn btn-success'>-</button>";
 },
],
],
]); ?>
 <?php Pjax::end() ?>

<div class="form-group">
<label for="inputPassword5" class="form-label">Password</label>
<input type="password" id="inputPassword5" class="form-control"
aria-describedby="passwordHelpBlock">
<div id="passwordHelpBlock" class="form-text">
 Введите пароль для оформления заказа
</div>
<button onclick='byOrder()' class='btn btn-success'>Оформить заказ</button>

</div>
</div>

 Русифицировать подписи столбцов
можно в файлах models/Cart.php и

models/Product.php:

public function attributeLabels()
 {
 return [
 'id' => 'ID',
 'user_id' => 'User ID',
 'product_id' => 'Product ID',
 'count' => 'Количество',
];
 }

public function attributeLabels()
 {
 return [
 'id' => 'ID',
 'date' => 'Дата',
 'name' => 'Наименование',

 'file' => 'Фото',
 'count' => 'Количество',
 'price' => 'Цена',
 'year' => 'Год выпуска',
 'model' => 'Модель',
 'country' => 'Производитель',
 'category_id' => 'Category ID',
];
 }

 1.​ Добавить в меню ссылку на
корзину пользователя (файл
views/layouts/main.php):

['label' => 'Корзина', 'url' => ['/cart/index'], 'visible'=>!Yii::$app->user->isGuest],

Управление количенством товаров в корзине
Примеры задания условий
выборки находятся в Zeal -
ActiveRecord

Отредактировать метод actionCreate
в файле controllers/CartController.php
согласно требованиям задания.
//Работа с корзиной на стороне
сервера

 public function actionCreate($id_product)
 {
 $product = Product::find()->where(['id' => $id_product])->andWhere(['>', 'count', 0])->one();

 if (!$product) {
 return "Такого продукта нет";
 }

 $itemInCart = Cart::find()
 ->where(['product_id' => $id_product])
 ->andWhere(['user_id' => \Yii::$app->user->identity->id])
 ->one();

 if (!$itemInCart) {
 $itemInCart = new Cart([
 'product_id' => $id_product,
 'user_id' => \Yii::$app->user->identity->id,
 'count' => 1
]);
 $itemInCart->save();

 return "Продукт добавлен. Количество товаров в корзине = $itemInCart->count";
 }

 if ($itemInCart->count + 1 > $product->count) {
 return "Нельзя больше добавить";
 }

 $itemInCart->count++;
 $itemInCart->save();
 return "Продукт добавлен. Количество товаров в корзине = $itemInCart->count";
 }

Импортировать классы:
Use Yii;
use app\models\Cart;

Zeal – Worcing with Clirnt Script –
статья Registering script files

Работа с корзиной на стороне
клиента
Views/cart/index.php

.

Можно использовать обычную
верстку div из бутстрап

Создать поле, в которое будем
выводить сообщения об изменения
в корзине (все наши return)

Пример функции мы берем из
Zeal – jQuery-Ajax-jQuery.ajax -
context

Создадим папку и файл
web/js/main.js и прописать код
для проверки функции

function addCart(id_product) {
 $.ajax({
 method: 'GET',
 url: `/cart/create?id_product=${id_product}`,

 }).done(function (message) {
 $.pjax.reload({
 container: '#cart'
 });
 $('.info').html(message);
 setTimeout(() => {
 $('.info').text('');
 }, 1000);
 });
}

 div class="cart-index">

 <h1><?= Html::encode($this->title) ?></h1>
 <div class="info alert alert-primary"></div>

 <?php Pjax::begin(['id' => 'cart']) ?>
 <?= GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],
 'product.name',
 'count',
 [
 'format' => 'raw',
 'value' => function ($data) {
 return "<button onclick='addCart($data->product_id)' class='btn
btn-success'>+</button>
 <button onclick='removeCart($data->product_id)' class='btn btn-success'>-</button>";
 },
],
],
]); ?>
 <?php Pjax::end() ?>

Импортировать Pjax

use yii\widgets\Pjax;

 Выполняем действия на стороне
сервера
1.​ Для уменьшения товара в
корзине нужно изменить метод
delete (файл
controllers/CartController.php) в
соответствии с заданием:
1.Проверяем есть ли продукт в
корзине
2.Если продукт найден проверяем,
если количество при удалении
станет ноль, то товар удаляем из
корзины, если не ноль
3. Уменьшаем количество товара

public function actionDelete($id_product)
 {
 $itemInCart = Cart::find()
 ->where(['product_id' => $id_product])
 ->andWhere(['user_id' => \Yii::$app->user->identity->id])
 ->one();

 if (!$itemInCart) {
 return "Такого продукта не найдено";
 }

 if ($itemInCart->count-1==0) {
 $itemInCart->delete();
 return "Продукт удален";
 }
 $itemInCart->count--;
 $itemInCart->save();
 return "Количество продуктов в корзине уменьшено";
 }

 Выполняем действия на стороне
клиента
Добавить обработку сообщения в
функции removeCart (файл
web/js/main.js):

function removeCart(id_product) {
 $.ajax({
 method: 'POST',
 url: `/cart/delete?id_product=${id_product}`,

 }).done(function (message) {
 $.pjax.reload({
 container: '#cart'
 });
 $('.info').html(message);
 setTimeout(() => {
 $('.info').text('');
 }, 1000);
 });
}

Boostrap-forms Создать форму для ввода пароля
для оформления заказа gjckt

 <?php Pjax::end() ?>

<div class="form-group">
<label for="inputPassword5" class="form-label">Password</label>
<input type="password" id="inputPassword5" class="form-control"
aria-describedby="passwordHelpBlock">
<div id="passwordHelpBlock" class="form-text">
 Введите пароль для оформления заказа
</div>
<button onclick='byOrder()' class='btn btn-success'>Оформить заказ</button>

 Написали функцию для обработки
пароля на стороне клиента в файле
web/js/main.js:

function byOrder() {
 let password=$('#inputPassword5').val();
 console.log(password);
 if (!password) {
 $('.info').html("Введите пароль");
 return
 }
 $.ajax({
 method: "GET",
 url: `/cart/by-order?password=${password}`,
 })
 .done(function (message) {
 $.pjax.reload({
 container: '#cart'
 });
 $('.info').html(message);
 })

}

 Добавить метод для оформления
заказа в файл
controllers/CartController.php:
ОБРАТИТЬ ВНИМАНИЕ НА
НАПИСАНИЕ АДРЕСА by-order и
методов byOrder. В самом конце

 public function actionByOrder($password) {
 if (!\Yii::$app->user->identity->validatePassword($password)) {
 return "Пароль не верный";
 }

 $itemInCart = \Yii::$app->user->identity->carts;

перед последней закрывающейся
фигурной скобкой:
1.​ Проверяет, правильно ли

пользователь указал пароль

2.​ Все заказы из корзины мы

перемещаем в переменную

$itemInCart

3.​ Проверяем есть ли товары

в корзине.

4.​ Создаем объект заказа

5.​ Организуем цикл для

переноса товаров из корзины в

заказ посредством таблицы

ProductOrder

 if (!$itemInCart) {
 return "Корзина пуста";
 }
 $order = new Order([
 'user_id' => \Yii::$app->user->identity->id,
 'status_id' => Status::find()->where(['code' => 'new'])->one()->id
 //'status_id' => 1
]);
 $order->save();

 foreach ($itemInCart as $item) {
 $itemInOrder = new ProductOrder([
 'order_id' => $order->id,
 'product_id' => $item->product_id,
 'count' => $item->count,
 'price' => $item->count * $item->product->price
]);
 $itemInOrder->save();
 $item->delete();
 }
 return "Заказ сформирован";
 }

 Выполнить импортирование методов

use app\models\Product;
use app\models\Order;
use app\models\ProductOrder;

Отображение заказов у пользователя

Zeal – DataProvider Перейти в кодогенератор Gii(адрес
вида login-m1.wsr.ru/gii) и
сгенерировать CRUD для модели
Order:

Grud Generator
Model Class : app\models\Order

Controller Class:
App\controllers\OrderController

Изменить метод index для выборки данных только авторизованного пользователя и
сортировки по дате добавления в файле controllers/OrderController.php:
 public function actionIndex()
 {
 $dataProvider = new ActiveDataProvider([
 'query' => Order::find()->where(['user_id' => \Yii::$app->user->id]),

 1.​ Ограничить доступ к index
только для авторизованного
пользователя в файле
controllers/OrderController.php:
2.​ Скопировать права
доступа из CartController behaviors

 'access' => [
 'class' => AccessControl::class,
 'only' => ['index'],
 'rules' => [
 [
 'actions' => ['index'],
 'allow' => true,
 'roles' => ['@'],
],
],
],

 1.​ Изменить отображение
списка ордеров в представлении
(файл views/order/index.php):
2.​ Редактируем по примеру
корзины.
3.​ Нужно оставить
количество, наименование и статус

$this->title = 'Мои заказы';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="order-index">

 <h1><?= Html::encode($this->title) ?></h1>

заказа, притом упорядочены
должны быть от новых к старым

 <?= GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],

 'date',
 'status.name',
 [
 'label'=>"Количество товаров",
 'format' => 'raw',
 'value' => function ($data) {
 return count($data->productOrders);
 },
],
 [

 'format' => 'html',
 'label' => 'Список товаров',
 'value' => function ($data) {
 $orders = [];
 foreach ($data->productOrders as $item) {
 $orders[] = $item->product->name;
 }
 return join('
', $orders);
 },
],
 [
 'class' => ActionColumn::className(),
 'template' => '{delete}',
 'visibleButtons'=> [
 'delete'=>function ($model, $key, $index) {
 return $model->status->code === 'new';
 }
]
],
],
]); ?>

</div>

 Добавить ссылку на страницу с
ордерами (файл
views/layouts/main.php):

['label' => 'Заказ', 'url' => ['/order/index'], 'visible'=>!Yii::$app->user->isGuest],

Организация панели управления сайтом администратора
Zeal- третья ссылка Autorization
Access Control Filter
'access' => [
 'class' =>
AccessControl::class,
 'only' => ['login', 'logout',
'signup'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['login',
'signup'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['logout'],
 'roles' => ['@'],
],

Используя Gii создать в режиме
Controller Generator
AdminController для панели
администрирования сайта/
ControllerClass:
app\controller\AdminController

Проверить получение конроллера в папке controller/ AdminController и отображения по
адресу admin/index
Из CartControllers полностью скопировать метод behaviors в AdminController и дописать
правило
 parent::behaviors(),
 [
 'access' => [
 'class' => AccessControl::class,
 'only' => ['index'],
 'rules' => [
 [
 'actions' => ['index'],
 'allow' => true,
 'roles' => ['@'],
 'matchCallback' => function ($rule, $action) {
 return \Yii::$app->user->identity->isAdmin();
 }
],

 Изменим наполнение страницы
admin/index
Используя Gii создать модель
SearchOrder для поиска и
отображение для формы поиска
(файл _search.php):
Мы файлы создадим, но НЕ
БУДЕМ ИХ ПЕРЕЗАПИСЫВАТЬ

Добавилась новая модель и дополнительное представление в views/order/
Изменить код метода actionIndex в файле controllers/AdminController.php (код за основу
можно взять из файла controllers/OrderController.php)
public function actionIndex()
 {
 $searchModel = new OrderSearch();
 $dataProvider = $searchModel->search($this->request->queryParams);

 return $this->render('index', [
 'searchModel' => $searchModel,

Используя Gii создать в режиме
GRUD Generator
ModelClass: app\models\Order
Search Model Class:
app\models\SearchOrder
ControllerClass:
app\controller\OrderController

Генерировать только
Models/SearchOrder
И views/order/_search.php

 'dataProvider' => $dataProvider,
]);
 }
Изменим представление admin/index. Из файла генератора order/index скопировать весь
файл и вставить его в admin/index, который практически пустой.
Изменить название на Админ панель, убрать кнопку добавления заказа.
Используя код из статьи Data Widgets раздел Data column изменить представление index в
файле views/admin/index.php:
use app\models\Order;
use yii\helpers\Html;
use yii\helpers\Url;
use yii\grid\ActionColumn;
use yii\grid\GridView;

/** @var yii\web\View $this */
/** @var app\models\OrderSearch $searchModel */
/** @var yii\data\ActiveDataProvider $dataProvider */

$this->title = 'Административная панель';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="order-index">

 <h1><?= Html::encode($this->title) ?></h1>
 <?= Html::a('Управление категориями', ['category/index'], ['class' => 'profile-link']) ?>
 <?= Html::a('Управление продуктами', ['product/index'], ['class' => 'profile-link']) ?>

 <?php // echo $this->render('_search', ['model' => $searchModel]); ?>

 <?= GridView::widget([
 'dataProvider' => $dataProvider,
 'filterModel' => $searchModel,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],
 'date',
 [
 'label' => 'Статус',

 'attribute' => 'status_id',
 'filter' => ['1' => 'Новый', '2' => 'Подтвержденный', '3' => 'Отклоненный'],
 'value'=>'status.name',
 'filterInputOptions' => ['prompt' => 'Все статусы', 'class' => 'form-control', 'id' => null]
],
 [
 'format' => 'raw',
 'label'=> 'Количество товаров в заказе',
 'value' => function ($data) {
 return count($data->productOrders);
 },
],

 [
 'format' => 'raw',
 'label'=> 'ФИО заказчика',
 'value' => function ($data) {
 return $data->user->name.' '.$data->user->surname.' '.$data->user->patronymic;
 },
],
 [
 'class' => ActionColumn::className(),
 'template' => '{update}',
 'visibleButtons' => [
 'update' => function ($model, $key, $index) {
 return $model->status->code == 'new';
 }
]
],
],
]); ?>

</div>
Изменить редирект при авторизации (файл controllers/SiteController.php)
 public function actionLogin()
 {
 if (!Yii::$app->user->isGuest) {
 return $this->goHome();

 }

 $model = new LoginForm();
 if ($model->load(Yii::$app->request->post()) && $model->login()) {
 if (Yii::$app->user->identity->isAdmin()) {
 return $this->redirect(['/admin']);
 }
 return $this->goBack();
 }

 $model->password = '';
 return $this->render('login', [
 'model' => $model,
]);
 }
Добавить ссылку на админ-панель (файл views/layouts/main.php)
 ['label' => 'Админка', 'url' => ['/admin'], 'visible' => !Yii::$app->user->isGuest &&
Yii::$app->user->identity->isAdmin()],

Управление категориями
Zeal- третья ссылка Autorization
Access Control Filter
'access' => [
 'class' =>
AccessControl::class,
 'only' => ['login', 'logout',
'signup'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['login',
'signup'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['logout'],

Используя Gii создать в режиме
GRUD Generator
ModelClass: app\models\Category
ControllerClass: app\controller\
CategoryController

Проверить переход category/index

Ограничить доступ к методам контроллера только для администратора (файл
controllers/CategoryController.php): так как все действия должны быть доступны только
администраторы
 'access' => [
 'class' => AccessControl::class,
 'only' => ['index'],
 'rules' => [
 [
 'actions' => ['index','view', 'create', 'delete', 'update'],
 'allow' => true,
 'roles' => ['@'],
 'matchCallback' => function ($rule, $action) {
 return \Yii::$app->user->identity->isAdmin();
 }
],
],
],

 'roles' => ['@'],
],

Zeal – HTML Helper ссылки
<?= Html::a('Profile', ['user/view', 'id'
=> $id], ['class' => 'profile-link']) ?>

В админпанель добавить ссылку на управление категориями (файл
views/admin/index.php):
 <?= Html::a('Управление категориями', ['category/index'], ['class' => 'profile-link']) ?>

Управление товаром
 Используя Gii создать в режиме

GRUD Generator
ModelClass: app\models\Product
ControllerClass: app\controller\
ProductController

Проверить переход product/index

Проверить отображение всех продуктов. Добавить ссылку управления продуктами по
аналогии Управления категориями.
<?= Html::a('Управление продуктами', ['product/index'], ['class' => 'profile-link']) ?>
Для всех сгенерированных методов контроллера указать доступ только для
администратора (файл controllers/ProductController.php)
 'access' => [
 'class' => AccessControl::class,
 'only' => ['index'],
 'rules' => [
 [
 'actions' => ['index', 'view', 'create', 'delete', 'update'],
 'allow' => true,
 'roles' => ['@'],
 'matchCallback' => function ($rule, $action) {
 return \Yii::$app->user->identity->isAdmin();
 }
],
],
],
Копируем из HTML Helper DropDownList для создания списка категорий.Изменить
отображение формы для добавления продукта (добавить список категорий, указать
возможность загрузки изображения и т.д) в файле views/product/_form.php:
<div class="product-form">

 <?php $form = ActiveForm::begin(['options' => ['enctype' => 'multipart/form-data']]); ?>

 <?= $form->field($model, 'name')->textInput(['maxlength' => true]) ?>

 <?= $form->field($model, 'imageFile')->fileInput() ?>

 <?= $form->field($model, 'count')->textInput() ?>

 <?= $form->field($model, 'price')->textInput(['maxlength' => true]) ?>

 <?= $form->field($model, 'year')->textInput() ?>

 <?= $form->field($model, 'model')->textInput(['maxlength' => true]) ?>

 <?= $form->field($model, 'country')->textInput(['maxlength' => true]) ?>

 <?= $form->field($model,
'category_id')->dropDownList(ArrayHelper::map(Category::find()->asArray()->all(), 'id', 'name')) ?>

 <div class="form-group">
 <?= Html::submitButton('Save', ['class' => 'btn btn-success']) ?>
 </div>

 <?php ActiveForm::end(); ?>

</div>
Импортировать в начало файла
use app\models\Category;
use yii\helpers\ArrayHelper;

Zeal-UploaderFiles - Creating Models

use yii\web\UploadedFile;
return [
 [['imageFile'], 'file',
'skipOnEmpty' => false, 'extensions'
=> 'png, jpg'],
];

Реализация загрузки фотографии.
Для реализации загрузки фото
товара можно использовать код из
статьи Uploading Files. Добавить в
модель Product поле imageFile и
логику загрузки в файл модели
(файл models/Product.php):

Добавить новое свойство в модель Product
class Product extends \yii\db\ActiveRecord
{
 public $imageFile;

Настроить валидацию расширений изображений

 [['imageFile'], 'file', 'skipOnEmpty' => false, 'extensions' => 'png, jpg'],
Добавить папку Uploads в папку web
Создать директорию web/uploads
Добавить функцию загрузки изображения
$fileName будет содержать путь к файлу в самый конец

public function upload()
 {
 if ($this->validate()) {
 $fileName='uploads/'.$this->imageFile->baseName.'.'.$this->imageFile->extension;
 $this->imageFile->saveAs('uploads/' . $this->imageFile->baseName . '.' .
$this->imageFile->extension);
 $this->imageFile->saveAs($fileName);
 $this->file='/'.$fileName;
 return true;
 } else {
 return false;
 }
 }

 Изменить действие контроллера
для обработки загрузки
(controllers/ProductController.php)
В методе ActionCreate нужно
дописать файл загрузки: Если
пришли данные, то мы их
загрухаем в модель
- если модель загружена, сохраним
imageFile и сохраняем модель
- если не получилось сохранить
модель, тогда редирект на саму
страницу

public function actionCreate()
 {
 $model = new Product();

 if ($this->request->isPost) {
 if ($model->load($this->request->post())) {
 $model->imageFile = UploadedFile::getInstance($model, 'imageFile');
 if ($model->upload() && $model->save(false)) {
 return $this->redirect(['index']);
 }
 }
 } else {
 $model->loadDefaultValues();
 }

 return $this->render('create', [
 'model' => $model,
]);
 }

Импортировать use app\models\Product;
use yii\data\ActiveDataProvider;
use yii\web\Controller;

use yii\web\NotFoundHttpException;
use yii\filters\VerbFilter;
use yii\filters\AccessControl;
use yii\web\UploadedFile;

 Аналогично созданию необходимо поправить и редактирование товара
(controllers/ProductController.php):
 public function actionUpdate($id)
 {
 $model = $this->findModel($id);

 if ($this->request->isPost) {
 if ($model->load($this->request->post())) {
 $model->imageFile = UploadedFile::getInstance($model, 'imageFile');
 if ($model->upload() && $model->save(false)) {
 return $this->redirect(['index']);
 }
 }
 }

 return $this->render('update', [
 'model' => $model,
]);
 }

Управление заказом
 Добавить правила доступа

администратора к редактированию
заказов (можно изменять статус
только нового заказа) в файле
controllers/AdminController.php

 [
 'actions' => ['update'],
 'allow' => true,
 'roles' => ['@'],
 'matchCallback' => function ($rule, $action) {
 $id_order=\Yii::$app->request->get('id');
 $order=Order::findOne($id_order);
 return \Yii::$app->user->identity->isAdmin() && $order->status-> code ==='new';
 }
],
Проверить из-под администратора, верно ли, что администратор может редактировать
только новые заказы.

Добавить файлы представления update.php и _form.php для редактирования заказа в
директорию views/admin, скопировав их из директории views/order/
Отредактировать файлы.

Update.php
<?php

use yii\helpers\Html;

/** @var yii\web\View $this */
/** @var app\models\Order $model */

$this->title = 'Изменение заказа: ' . $model->id;
?>
<div class="order-update">

 <h1><?= Html::encode($this->title) ?></h1>

 <?= $this->render('_form', [
 'model' => $model,
]) ?>

</div>

_form.php
<?php

use yii\helpers\ArrayHelper;
use yii\helpers\Html;
use yii\widgets\ActiveForm;

/** @var yii\web\View $this */
/** @var app\models\Order $model */
/** @var yii\widgets\ActiveForm $form */
?>

<div class="order-form">

 <?php $form = ActiveForm::begin(); ?>

 <?= $form->field($model, 'status_id')
 ->dropDownList(ArrayHelper::map(\app\models\Status::find()->asArray()->all(),'id','name')) ?>

 <?= $form->field($model, 'rejection_reason')->textarea(['rows' => 6]) ?>

 <div class="form-group">
 <?= Html::submitButton('Сохранить', ['class' => 'btn btn-success']) ?>
 </div>

 <?php ActiveForm::end(); ?>

</div>

 Добавить метод update для
редактирования заказа в класс
controllers/AdminController.php: Эти
функции можно взять из метода
OrderControler
Но нужно изменить редирект на
основную страницу

public function actionUpdate($id)
 {
 $model = Order::findOne(['id' => $id]);

 if ($this->request->isPost && $model->load($this->request->post()) && $model->save()) {
 return $this->redirect(['index']);
 }

 return $this->render('update', [
 'model' => $model,
]);
 }

Zeal – Validation – Conditional
Validation
 ['state', 'required', 'when' =>
function ($model) {
 return $model->country ==
'USA';
 }, 'whenClient' => "function
(attribute, value) {

Добавить валидацию
(обязательность указания
комментария при отмене заказа) в
файле models/Order.php:

 ['rejection_reason', 'required', 'when' => function ($model) {
 return $model->status->code == 'rejected';
 }, 'whenClient' => "function (attribute, value) {
 return $('#order-status_id').val() == 'Отклоненный';

 }"],

 return $('#country').val() ==
'USA';
 }"]
Отображение товаров в каталоге
 Изменить index метод в

контроллере
controllers/SiteController.php

Импортировать Active DataProvider

public function actionIndex($id_category = null)
 {
 $dataProvider = new ActiveDataProvider([
 'query' => $id_category? Product::find()->where(['>', 'count', 0])->andWhere(['category_id' =>
$id_category]) : Product::find()->where(['>', 'count', 0]),
 'pagination' => [
 'pageSize' => 3,
],
 'sort' => [
 'defaultOrder' => [
 'date' => SORT_DESC,
]
],
]);

 return $this->render('index',['dataProvider'=> $dataProvider]);
 }

 Изменить отображение в

представлении (файл

views/site/index.php):

Представление скопировать

cart/index все скопировать и

вставить, изменив название

Каталог, изменив product.name на

name. Надо добавить цену., страну,

год производства

Для вставки рисунка можно

воспользоваться HtmlHelper статья

Images

<?php
use app\models\Cart;
use app\models\Category;
use yii\helpers\ArrayHelper;
use yii\helpers\Html;
use yii\helpers\Url;
use yii\grid\ActionColumn;
use yii\grid\GridView;
use yii\widgets\Pjax;
​

/** @var yii\web\View $this */
/** @var yii\data\ActiveDataProvider $dataProvider */

$this->title = 'Каталог';

$this->params['breadcrumbs'][] = $this->title;
$this->registerJsFile(
 '@web/js/main.js',
 ['depends' => [\yii\web\JqueryAsset::class]]
);

?>
<div class="cart-index">

 <h1><?= Html::encode($this->title) ?></h1>
 <div class="info alert alert-primary"></div>
 <?php Pjax::begin(['id' => 'cart']) ?>
 <?= GridView::widget([
 'dataProvider' => $dataProvider,
 'columns' => [
 ['class' => 'yii\grid\SerialColumn'],
 'name',
 'price',
 'country',
 'year',
 'count',
 [
 'format' => 'html',
 'value' => function ($data){
 return Html::img('@web'.$data->file, ['alt' => 'Товар не имеет изображения', 'width'=>
200]);
 },
],
 [
 'format' => 'raw',
 'value' => function ($data) {
 return "<button onclick='addCart($data->id)' class='btn btn-success'>+</button>";

 },
],
],
]); ?>
 <?php Pjax::end() ?>

</div>

 Можно сразу русифицировать
модель продукта

public function attributeLabels()
 {
 return [
 'id' => 'ID',
 'date' => 'Дата',
 'name' => 'Наименоване продукта',
 'file' => 'Изображение товара',
 'count' => 'Количество товаров',
 'price' => 'Цена',
 'year' => 'Год изготовления',
 'model' => 'Модел',
 'country' => 'Страна',
 'category_id' => 'Category ID',
];
 }

Фильтрация списка товаров
 Из product/_form можно взять

список категорий
В site/index до pjax добавляем

В представление
views/site/index.php добавить
выпадающий список категорий
товаров (пример кода можно взять
в Zeal в статьях Html helpers -> Input
Fields и Creating Forms -> Creating Lists

<?php
 $category = ArrayHelper::map(Category::find()->asArray()->all(), 'id', 'name');
 echo Html::dropDownList('list', null, $category, [
 'prompt' => 'Выберите категорию',
 'onchange' => 'getProduct(this.options[this.selectedIndex].value)',
 'class'=>'form-select'
])
 ?>

 Добавить js функцию getProduct в

файл web/js/main.js:

function getProduct(id_category) {
 $.pjax.reload({
 url: `/?id_category=${id_category}`,
 container: '#cart'
 });

}

 Доработать метод index для

получения товаров определенной

категории (файл

controllers/SiteController.php)

public function actionIndex($id_category = null)
 {
 $dataProvider = new ActiveDataProvider([
 'query' => $id_category? Product::find()->where(['>', 'count', 0])->andWhere(['category_id' =>
$id_category]) : Product::find()->where(['>', 'count', 0]),
 'pagination' => [
 'pageSize' => 3,
],
 'sort' => [
 'defaultOrder' => [
 'date' => SORT_DESC,
]
],
]);

Отображение карточки товара
 Добавить метод view из

ProductController в файле

controllers/SiteController.php и

скопировать метод из

ProductController для получения

данных товара:

 public function actionView($id)
 {
 return $this->render('view', [
 'model' => Product::findOne($id),
]);
 }

 Добавить файл views/site/view.php

из product/view:и и вставить туда

отображение карточки товара

(пример кода можно взять из

шаблона который генерирует gii)

$this->registerJsFile(
 '@web/js/main.js',
 ['depends' => [\yii\web\JqueryAsset::class]]
);
?>
<div class="product-view">

 <h1><?= Html::encode($this->title) ?></h1>

 <?php Pjax::begin(['id' => 'cart']) ?>
 <?= DetailView::widget([

 'model' => $model,
 'attributes' => [
 'name',
 [
 'label'=> 'Изображение товара',
 'format' => 'html',
 'value' => Html::img('@web' . $model->file, ['alt' => 'Товар не имеет изображения',
'width' => 200]),
],
 'count',
 'price',
 'year',
 'model',
 'country',
 'category.name',
 [
 'attribute' => 'Добавить в корзину',
 'format' => 'raw',
 'value' => function ($model) {
 return "<button onclick='addCart($model->id)' class='btn btn-success'> + </button>";
 },
 'visible' => !\Yii::$app->user->isGuest,
],
],
]) ?>
 <?php Pjax::end() ?>

</div>

Реализация дополнительных страниц
 Переименовать ссылки в главном

меню (файл views/layouts/main.php)

 echo Nav::widget([
 'options' => ['class' => 'navbar-nav'],
 'items' => [
 ['label' => 'Каталог', 'url' => ['/site/index']],
 ['label' => 'О нас', 'url' => ['/site/about']],
 ['label' => 'Где нас найти', 'url' => ['/site/contact']],
 ['label' => 'Регистрация', 'url' => ['/user/create'],'visible'=> Yii::$app->user->isGuest],
 ['label' => 'Заказ', 'url' => ['/order/index'], 'visible'=>!Yii::$app->user->isGuest],

 ['label' => 'Корзина', 'url' => ['/cart/index'], 'visible' => !Yii::$app->user->isGuest],
 ['label' => 'Админка', 'url' => ['/admin'], 'visible' =>
!Yii::$app->user->isGuest&&Yii::$app->user->identity->isAdmin()],

 Yii::$app->user->isGuest
 ? ['label' => 'Вход', 'url' => ['/site/login']]
 : '<li class="nav-item">'
 . Html::beginForm(['/site/logout'])
 . Html::submitButton(
 'Выход (' . Yii::$app->user->identity->username . ')',
 ['class' => 'nav-link btn btn-link logout']
)
 . Html::endForm()
 . ''
]
]);

 Проверить медиафайлы, если их

нет, то их можно придумать, взяв из

доступных ресурсов. Создавать

структуру можжно как из

библиотеки boostrap, так из

Zeal-HTML Helper. Создать каталог

img и поместить туда файл с

картой:

 На странице “Где нас найти”

(views/site/contact.php) сверстать

данные согласно заданию (карта и

контактные данные (адрес, номер

телефона, email)):

$this->title = 'Contact';
$this->params['breadcrumbs'][] = $this->title;
?>
<div class="site-contact">
 <div class='container'>
 <h1>Где нас найти?</h1>
 <div class="card" style="width: 90%;">

 <div class="card-body">
 <h5 class="card-title">Наши координаты:</h5>

 <p class="card-text">Some quick example text to build on the card title and make up the bulk of the
card's content.</p>
 </div>
 <ul class="list-group list-group-flush">
 <li class="list-group-item">Email:ty@mail.ru
 <li class="list-group-item">Телефон:8 (919) 555-44-33
 <li class="list-group-item">Адрес: смотрните по карте

</div>

 </div>

</div>

 На странице “О нас”

(views/site/about.php) сверстать

данные согласно заданию (логотип

компании и написан девиз

компании):

1.​ Используя верстку из

статьи Bootstrap 5 -> Carousel

раздел Dark variant

сверстать карусель

последних 5 продуктов

(файл views/site/about.php):

2.​ Скопируем выборку

продуктов из CartController

 $product =
Product::find()->where(['id' =>
$id_product])->andWhere(['>',
'count', 0])->one();
Изменим запрос на пять
отсортированных по дате
(можно найти в DataProvider
Active record)

this->title = 'О нас';
$this->params['breadcrumbs'][] = $this->title;
$product= Product::find()->where(['>', 'count', 0])->orderBy(['date' => SORT_DESC,])->limit(5)->all();
​

?>
<div class="site-about">
 <h1><?= Html::encode($this->title) ?></h1>

 <div class="text-center">

 <div class="text-center"><p class="fs-1">Все лучшее - у нас!</p></div>

 </div>
 <div class='container'>
 <div id="carouselExampleControls" class="carousel slide" data-bs-ride="carousel">

 <div class="carousel-inner">
 <?php foreach($product as $item) { ?>
 <div class="carousel-item active">
 <img src="<?= $item->file ?>" class="d-block w-100" alt="<?= $item->name ?>">
 <h1 align='center'><?= $item->name ?></h1>
 </div>

 <?php } ?>
 </div>

 <button class="carousel-control-prev" type="button" data-bs-target="#carouselExampleControls"
data-bs-slide="prev">

 Previous
 </button>
 <button class="carousel-control-next" type="button" data-bs-target="#carouselExampleControls"
data-bs-slide="next">

 Next
 </button>
</div>
</div>

 <code><?= __FILE__ ?></code>
</div>

 В папке web создать папку , а в ней

папку css

В этой папке создать файл main.css

@font-face {
 font-family: "new-font";
 src: url("../web/fonts/helvetica_bold.otf") ;
}

.container {
 font-family: new-font, serif;
}

 В файле views/layout/main

подключить стиль

$this->registerCssFile(
 '@web/css/main.css');

 Закомментировать функции в

файле main.js

//Добавление товара в корзину
function addCart(id_product) {
 $.ajax({
 method: 'GET',
 url: `/cart/create?id_product=${id_product}`,

 }).done(function (message) {

 $.pjax.reload({
 container: '#cart'
 });
 $('.info').html(message);
 setTimeout(() => {
 $('.info').text('');
 }, 1000);
 });
}
//Удаление товара из корзины
function removeCart(id_product) {
 $.ajax({
 method: 'POST',
 url: `/cart/delete?id_product=${id_product}`,

 }).done(function (message) {
 $.pjax.reload({
 container: '#cart'
 });
 $('.info').html(message);
 setTimeout(() => {
 $('.info').text('');
 }, 1000);
 });
}
//Подтверждение заказа
function byOrder() {
 let password = $('#inputPassword5').val();
 console.log(password);
 if (!password) {
 $('.info').html("Введите пароль");
 return
 }
 $.ajax({
 method: "GET",
 url: `/cart/by-order?password=${password}`,
 })
 .done(function (message) {

 $.pjax.reload({
 container: '#cart'
 });
 $('.info').html(message);
 })
}
//Фитрация каталога по категориям
function getProduct(id_category) {
 $.pjax.reload({
 url: `/?id_category=${id_category}`,
 container: '#cart'
 });
}

	Zeal – Worcing with Clirnt Script – статья Registering script files
	Можно использовать обычную верстку div из бутстрап
	Пример функции мы берем из Zeal – jQuery-Ajax-jQuery.ajax - context
	
	
	
	Boostrap-forms
	
	
	
	Отображение заказов у пользователя
	Zeal – DataProvider
	
	
	

	Организация панели управления сайтом администратора
	Zeal- третья ссылка Autorization

	Access Control Filter
	

	Управление категориями
	Zeal- третья ссылка Autorization

	Access Control Filter
],

	Управление товаром
	

	Zeal-UploaderFiles - Creating Models
	

	
	
	Управление заказом
	
	
	Zeal – Validation – Conditional Validation

	 }"]
	Отображение товаров в каталоге
	
	
	

	Фильтрация списка товаров
	
	
	
	
	
	

	Отображение карточки товара
	
	
	
	
	Реализация дополнительных страниц
	
	
	
	
	
	
	
	
	
	
	
	
	
	

