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I.​ Supplementary Methods 

 

A. Original expected utility (EU) model  

​
 𝐸𝑈 = 𝑝𝑣α#𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑚𝑜𝑑𝑒𝑙 

 

1.​ Simulation and recovery 

To verify that our parameter of interest (Alpha) is recoverable, we simulated choice data 

of 10,000 subjects each with 35 trials, with values of each parameter in the model drawn 

randomly and uniformly from the range of possible parameter values. We chose a range sufficient 

to explain the range of risk preferences that can be captured by our task for our parameters 

during simulation (0.02 < Alpha < 3.32, 1e-06 < Beta <10).  In particular, we calculated the 

lower bound (0.035) for α by solving the following equation: 

 0. 9×100α = 5α 

The reasoning is as follows: given our choice set, the most risk averse individual would 

prefer the safe option ($5 with certainty) to the risky option with the highest expected value in 

our choice set, which is winning $100 with 0.90 probability. Under the same logic, the most risk 

seeking individual would prefer the risky option with the lowest expected value in our choice set 

($10 with 0.1 probability) to the certain option ($5). We therefore calculated the upper bound 

(3.32) for α by solving the following equation: 

 0. 1×10α = 5α 

An individual who would not select the lowest EV risky option over the safe option but 

would select the second lowest ($10 with 0.25 probability) from our choice set would solve the 

following equation: 

 

 0. 25×10α = 5α 

The resulting Alpha is 2. The choice set could have limited the model’s precision in 

distinguishing between Alpha values ranging from 2 to 3.32, as the difference between these two 

values lies in one choice. 

We fit computational decision models at the subject level and used the mfit toolbox 

(Gershman, 2016) for MATLAB, which uses fmincon (MATLAB 2018b; Mathworks). For 
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parameter recovery, we fit the simulated data using the abovementioned bounds for Beta (1e-06 < 

Beta <10) and slightly wider range for Alpha (0 < Alpha < 3.5). By slightly widening the search 

space, we are able to determine if a person’s Alpha is truly unrecoverable by seeing whether their 

value lies between 3.32 and 3.5; if we had capped fitted Alpha at 3.32 and the fitted Alpha is 

3.32, we wouldn’t know whether that is really within the bounds or whether the model does not 

have the option to put it out of bounds.  

We fitted the simulated data using the same EU model that generated it. Recoverability of 

model parameters is defined as the correlation between the parameter that generated the data and 

the parameter produced through model fitting  (Wilson & Collins, 2019). We ran correlations 

between parameters used to simulate the data (“input parameters”) and parameters fit by fmincon 

(“fitted parameters”). Although Beta recovery was mediocre (r = .400; Alpha <= 2: r = .594; 

Alpha > 2: r = .057), recovery for Alpha was quite reliable (r = .922) with a drop after Alpha 

exceeds 2 (Alpha <= 2: r = .935; Alpha > 2: r = .049). As mentioned above, Alpha = 2 is the 

value at which one would be indifferent between the risky and safe options for the second riskiest 

choice in our choice set. The fact that values of Alpha were indistinguishable between 2 and 3.5, 

is in line with the notion that such values (mostly) do not yield different choices. Within this 

range, there was not a difference in recoverability above vs. below the Alpha necessary to explain 

the range of risk preferences in the task (3.32). Together, these results suggest that the model is 

limited in its ability to distinguish small differences among the most risk-seeking participants, 

likely due to the choice set. Reassuringly, input values of Alpha above 2 did not yield recovered 

values below 2, so participants who are in this maximally risk seeking range are nearly always 

identified as such based on their Alpha (except where Beta was very low, such that participants 

frequently do not choose the option with higher EU) (Figure S1).  
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Figure S1. Recovery of Alpha based on different thresholds of input (simulated) Beta. x-axes 
denote recovered (fitted) Alpha. y-axes denote input (simulated) Alpha. The range on top of each 
panel denotes the range of input Beta that was used to generate the simulated data. 
 

2.​ Preliminary model comparison: Expected utility versus prospect theory models 

​ According to prospect theory and past research (Tversky & Kahneman, 1992; e.g., 

Gonzalez & Wu, 1999; Hsu et al., 2009; ) nonlinear weighting of probabilities is an important 

bias in decision making. Our choice set was designed according to an expected utility framework 

(Levy & Glimcher, 2011; Levy et al., 2012; Tymula et al., 2012) and not a prospect theory 

framework, and we did not expect that prospect theory based models would fit the data well. 

Nevertheless, for completeness and as a preliminary analysis step, we fit two additional models 

in the latter framework to determine whether incorporating a probability weighting function 

could improve the model fit. The first prospect theory model is constructed by combining the 

expected utility function and the following single-parameter weighting function: 

 

 𝑤 𝑝( ) =  𝑝γ

𝑝γ+ 1−𝑝( )γ( )
1
γ

#𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡 𝑡ℎ𝑒𝑜𝑟𝑦 𝑚𝑜𝑑𝑒𝑙 

 

Therefore, this prospect theory model includes three free parameters: Alpha, Beta, and 

Gamma, where Gamma ( ) controls the weighting of probabilities ( ). The second prospect γ 𝑝

theory model we fitted included only Beta and Gamma, i.e., assuming the decision-maker is risk 
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neutral. We examined the parameter recoverability of the two prospect theory models before 

fitting them to real data using the aforementioned procedure. These correlations between input 

and fitted parameters are displayed in Table S1, indicating poor parameter recovery for the 

prospect theory models. We conclude that it is not feasible to incorporate prospect theory into 

our computational approach and which is likely due to limitations of the choice set. 

 

Table S1. Parameter recoverability for expected utility and two prospect theory models  

 Alpha, Beta (EU model) Alpha, Beta, Gamma 

(prospect theory model) 

Beta, 

Gamma 

(prospect 

theory 

model) 

Alpha correlation 

(fitted, simulated 

input) 

0.922 (when Alpha<=2: 

0.935; when Alpha>2: 

0.049) 

0.206 (when Alpha<=2: 

0.204; alpha > 2: 0.024) 

 

Beta correlation 

(fitted, simulated 

input) 

0.400 (when Alpha<=2: 

0.594; when Alpha>2: 

0.057) 

0.138 (when Alpha<=2: 

0.222; when Alpha>2: 

0.006) 

0.52 

Gamma correlation 

(fitted, simulated 

input) 

 0.003 (when Alpha<=2: 

0.005; when Alpha> 2: 

-0.0004) 

0.028 

 

3.​ Decisions on model usability by condition 

​  We decided we would not use the original model if a given condition had more than 30 

participants with a negative log likelihood (LL) that exceeded the value of negative LL for an 

agent who chose randomly for all 35 trials: 

 − 𝑙𝑛 0. 5( ) ×35 = 24. 26
​ According to the criterion, which translates to an AIC of 52.52, we decided not to use the 

original model for the Opposite condition, Observed Opposite, and Unobserved Opposite 

conditions (Table S2). 
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Table S2. Number of unusable participants by condition  

Conditions N with negative LL > 52.52 

Baseline 0 

Friend Predicted 0 

Opposite 39 

Identical 0 

Unobserved Opposite 31 

Observed Opposite 37 

Unobserved Identical 4 

Observed Identical 6 

 

 

4.​ Model-based exclusions 

The criteria described in the Methods - Model-based exclusion section resulted in the 

following exclusions (Table S3). We conducted sensitivity analyses including and excluding 

participants whose Alpha is theoretically possible but exceeds 2, due to simulations showing 

poor recovery of Alpha in this range. See Sensitivity Analyses. 
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Table S3. Model exclusions by condition 
​  

Conditions Number of 
participants 
excluded 

Number of 
analyzed 
participants 

percentage of 
participants 
excluded 

Baseline 1 127 0.78% 

Opposite 10 118 7.81% 

Identical 0 128 0.00% 

Unobserved Identical 12 111 9.76% 

Observed Identical 10 113 8.13% 

Unobserved Opposite 5 118 4.07% 

Observed Opposite 8 115 6.50% 

 

These exclusions apply to analyses of Alpha and Weightfriend as dependent variables only, 

as they were derived from computational models. No participant was excluded for analyses using 

simulated earnings or proportion of risky choices. 

 

5.​ Posterior predictive check 

We ran a posterior predictive check on the Expected Utility model. For each real 

participant in each condition, we simulated 100 participants with the same parameter estimates. 

As a model-free measure, we calculated that participant’s proportion of risky choices and the 

proportion of risky choices across the corresponding 100 simulated participants for a given 

condition. The correlation between the proportion of risky choices for each real and simulated 

participant was high for all conditions (r > .8). 
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Table S4. Results of posterior predictive check 

Conditions   Correlation between real and simulated choices 

Baseline r=.98 

Friend Predicted r=.98 

Identical r=.98 

Unobserved Identical r=.84 

Observed Identical r=.83 

 

 



11 
 

B.   Revised model for Opposite context conditions 

 

 𝐸𝑈 = 1 − 𝑤( )𝑝
𝑠𝑒𝑙𝑓

𝑣
𝑠𝑒𝑙𝑓

α + 𝑤  𝑝
𝑓𝑟𝑖𝑒𝑛𝑑

𝑣
𝑓𝑟𝑖𝑒𝑛𝑑

α
𝑓𝑟𝑖𝑒𝑛𝑑( )#𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 

  

Through the same process outlined for our original model, we determined that our revised 

model was recoverable in its parameter of interest within the following bounds: Alpha ([0,2]). 

 

1.​ Parameter recovery 

Table S5. Parameter recovery for revised model. 
 
 

 

 

 

Beta (r =.35) is not a parameter of interest but rather a nuisance parameter that is meant to 

absorb noise in the data. Generally, the fit of noise parameters is not germane unless the overall 

model fit is poor, which we have shown to be not true in our case. Otherwise, model recovery 

focuses on parameters carried forward for inference, which in our case, is Alpha and Weightfriend, 

and both recovered well (r >.7). 

As Ballard & McClure (2019) presented in detail, the tradeoff between parameters of 

interest (i.e., the underlying psychological process we are interested in) and decision noise is a 

general problem for models that attempt to describe noisy psychological processes. Low 

correlations between decision noise and parameters of interest provide evidence indicating that 

there is little trade-off of parameters against one another, bolstering confidence that they are 

individually identifiable (Wilson & Collins, 2019). In our study, correlations between fitted 

values of Beta and Weightfriend (r = .09) and Beta and Alpha (r = -.03) are extremely low. The 

fact that Alpha / Weightfriend and Beta are not highly correlated (i.e., they are identifiable), paired 

with the fact that Alpha (the parameter of interest) is recoverable, builds confidence that the 

Alpha parameter is indeed robust and suitable for inference. 

2.​ Model Recovery with the revised vs. the original model 

 Weightfriend Alpha 

Correlation between simulated input and fitted 

value 

r=.73 r=.78 
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Like the process outlined for the original model, we simulated data using the original and 

revised model respectively, and fitted the resulting simulated data with both models respectively. 

Our new model outperformed the original model for the following bounds for Weightfriend 

[1e-06,1]. 

 

Table S6. Given what the generating model is (row), percentage of times that AIC suggests 
(column) is a better model. 

                      Fit model 

 

Data generating model  

Original Revised 

original  88.7% 11.3% 

revised 37.7% 62.3% 

 

Additionally, we explored the possibility that individuals use their own alpha as a proxy 

of their friend’s risk preference as well. To this end, we compared the median AIC resulting from 

using Alphafriend vs. participant’s own Alpha for the second term in our revised model. Using 

Alphafriend resulted in a better fit of the data (median AIC using Alphafriend vs. one’s own Alpha: 

30.056 vs. 30.593), indicating that using an estimated friend preferences better fit individual’s’ 

choices in the Opposite context, compared to using their own risk preference as a proxy for their 

friend’s preference. This means that participants tended to represent their friend’s risk 

preferences as distinct from their own. 
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II.​ Supplementary Results 

 

A.​ Results using proportion of risky choices as dependent variable 

 

1.​ Baseline Risky Choices 

 
Figure S2. Age-related patterns of risk seeking (proportion of risky choices). (A) Scatter plot of 
raw data. x-axis denotes age in years. y-axis indicates proportion of risky choices (number of 
risky choices divided by total number of trials in a condition). The blue line is a smoothing line 
over the data points to visualize age trend in the data. Shaded regions represent 95% CIs around 
the trend line. (B) First derivative of the GAM model. Shaded area represents 95% simultaneous 
CIs.   
 



14 
 

This analysis evaluated the relationship between proportion of risky choices and age in 

the Baseline condition. On average, participants chose risky choices 49% for the time (SD=0.13). 

The simultaneous CI of the first derivative of the spline included 0 at all ages (Fig. S2B). This 

indicates that in the age range of our sample, participants’ risk aversion remained constant as age 

increased. 

 

2.​ Age-related shifts in risky choices evoked by identical friend outcome 

​ Comparing the Identical condition to Baseline, we examined whether joint outcomes 

(risky choice identically impacting oneself and one’s friend) influence one’s baseline risk 

preferences. There were no differences between the Identical condition and Baseline overall, or 

age-related changes on the proportion of risky choices (Mean of Identical vs. Baseline: .51 vs. 

.49; B=0.05, t=0.99, SE=0.05, p=.323). This indicates that individuals did not proportionally take 

a different amount of risks when the choice stood to benefit oneself only, or oneself and one’s 

friend.  

 

3.​ Age-related shifts in risky choices evoked by opposite friend outcome 
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Figure S3.  Age-related patterns of proportion of risky choices: difference of fit estimates of the 
GAM model. Positive values indicate greater proportion of risky choices at Opposite than 
Baseline, negative values indicate the reverse, and 0 indicates proportions of risky choices are not 
significantly different across the conditions. Shaded area represents 95% simultaneous CIs of the 
difference between fit estimates at each age points. Dotted red lines show that between ages 
12.0-22.2 years, the 95% simultaneous CIs do not include 0, indicating significant age-related 
changes. 
 

In the Opposite condition, participants’ choices caused their friends to receive their 

unchosen option. Analyses determined the extent to which participants changed the proportion of 

risky options they chose compared to Baseline when the decision only concerned themselves. On 

average, participants chose risky options more often for themselves when it meant that their 

friend would otherwise have to accept the risky option (Mean of Opposite vs. Baseline: .56 vs. 

.49; B=0.28, t=5.50, SE=0.05, p<.001). This trend was significant in ages 12.0 to 22.2 years 

(Figure S3). Thus, participants from almost the entire age range of our sample chose 

proportionally more risky options when they had to decide whether to keep their preferred option 

or assign it to their friend instead. 

 

4.​ Age-related shifts in risky choices evoked by friend observation by context 

In the Identical context, participants chose proportionally more risky options when their 

friends watched them make decisions that yielded the same outcomes for them both, compared to 

when unwatched (Mean of Observed Identical vs. Unobserved Identical: .71 vs. .69; B= 0.13, 

t=2.47, SE= 0.05, p=.014).  

In the Opposite context, there were no significant differences by observation (Mean of 

Observed Opposite vs. Unobserved Opposite: .55 vs. .55; B=0.006, t=0.13, SE=0.05, p=0.900).  

There were no significant age-related differences by observation in either Identical or 

Opposite contexts.  
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B. ​ Distributions of actual and simulated random earnings 

 

 

Figure S4. Distributions of actual and simulated random earnings: the blue area represents 
simulated earnings, and the red area represents actual data. We simulated 10,000 participants 
choosing at chance (50%) with 35 trials each in the Baseline condition, and compared this 
distribution to that of the actual data from the Baseline condition (Mean of simulated random 
earnings vs. actual data: $406.06 vs. $614.52; Standard deviation of simulated random earnings 
vs. actual data: 72.14 vs. 63.75). 
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C. ​ Distributions of Alpha values by condition 

 

Figure S5.  Distributions of Alpha in each condition of the study. x-axis indicates Alpha value, 
y-axis (count) indicates the frequency of Alpha taking on a specific value. 
 
 
D.​ Results of friend predicted Alpha 

We evaluated the degree of consistency between participants’ own risk preferences and 

what they envisioned the risky choices to be if their friend was choosing for themselves (i.e., the 

Friend Predicted condition). By comparing the Friend Predicted condition to participants’ own 

Baseline condition, we can evaluate whether participants thought their friend’s choice would be 

the same, or riskier, than their own. This analysis follows the same logic as section “Treatment 

of age” paragraph 2 in the main paper.  

The overall mean risk preference (Alpha) derived from participants’ predicted choices for 

their friend is 0.63 (SD = 0.34) and does not change with age, as demonstrated by the fact that 
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the first derivative of the spline for Predicted Friend Alpha includes 0 at all ages. We used a 

factor smooth interaction described in Analysis section “Treatment of age” paragraph 3 of main 

text to ascertain whether there are age-related changes between one’s own Baseline Alpha (for 

solo decisions) vs. their predicted Friend Alpha (their prediction of their friend’s solo decisions). 

There was a main effect of Condition (Mean of Baseline vs. Predicted Friend Alpha: 0.55 vs. 

0.63, B=-0.08, SE=0.03, t=-2.96, p=.003), indicating that on average, participants predicted their 

friend to be relatively more risk seeking than they themselves are. There are no age-related 

changes, indicated by the fact that the Simultaneous CIs included 0 for all ages. In all, 

participants across the age range consistently thought their peer was more risk seeking than they 

themselves were. 

 

E. ​ Why the revised model is not used for conditions using the Identical context 

Although our revised model was designed with the Opposite context in mind, we checked 

whether we should consider using it for the Identical, Observed Identical, and Unobserved 

Identical condition, since they involved friend outcome in the decision as well, though in a 

different dynamic. Across all three Identical context conditions, the median AIC of the original 

model is smaller than that of the revised model, suggesting that the original model, which did not 

treat friend outcome as a competing source of utility to one’s own, provides a better model fit for 

these conditions (Table S7). 

 

Table S7. Model comparison for Identical conditions 

Condition Median AIC, Original Model Median AIC, Revised Model 

Identical 15.159 17.159 

Observed Identical 27.325 28.966 

Unobserved Identical 25.278 26.687 

 

III.​ Sensitivity Analysis 

Our primary analysis excluded participants based on the model-based exclusion section in the 

main text. As pre-registered, we conducted two sets of sensitivity analyses using different 

exclusion criteria on Alpha fitted by the original model, which was used for the Baseline 
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condition and all Identical context conditions. The first set of analyses exclude participants with 

fitted Alpha > 2, i.e., excluding participants whose Alpha is theoretically possible but exceeds 2, 

due to simulations showing poor recovery of Alpha within the range of 2-3.32 despite the 

recovery over the entire range of Alpha being robust. The second set of analysis had no 

exclusions, i.e., all participants’ data were used, including those with a theoretically impossible 

Alpha value based on our choice set (Alpha > 3.32). We did not conduct similar sensitivity 

analyses for Alpha fitted by the revised model by including data excluded in the primary analysis 

because when Alpha was not recoverable outside of the range [0,2] (see section I.B). In contrast, 

Alpha in the original model was still recoverable over the whole range used for recovery [0,3.5], 

though Alpha exceeding 3.32 was theoretically implausible given our choice set (see section 

I.A.1). 

 

A.​ Baseline risky choices 

Table S8. Number of participants in the Baseline condition under different exclusion criteria 

based on Alpha 

Exclusion based on Alpha Number of participants in Baseline 

No exclusions 128 

Exclude Alpha > 3.32 (Primary Analysis) 127 

Exclude Alpha > 2 127 

 

Excluding Alpha > 2 resulted in the same usable data as the analysis reported in the main text 

(Table S8), see the corresponding section in the Results. 

No exclusions: we fit our statistical model with no exclusions based on Alpha. The 

simultaneous CI of the first derivative of the spline included 0 at all ages (Figure S6B), which is 

the same as the primary finding that in the age range of our sample, participants’ risk aversion 

remained constant as age increased. 
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Figure S6. Age-related patterns of risk seeking (Alpha) with no exclusions. A. Scatterplot of raw 
data (Alpha values). The red line is a smoothing line over the data points to visualize the age 
trend in the data. Shaded region represents 95% simultaneous CIs around the trend line. B. First 
derivative of the GAM model. Shaded area represents 95% simultaneous CIs.  
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B.​ Age-related shifts in risky choices evoked by friend outcome 

 

Table S9. Number of participants for Baseline and Identical conditions under different exclusion 
criteria based on Alpha. 
Exclusion based on Alpha Number of participants in 

Baseline 

Number of participants in 

Identical 

No exclusion 128 128 

Exclude Alpha > 3.32 

(Primary Analysis) 

127 128 

Exclude Alpha > 2 127 128 

 

Excluding Alpha > 2, similar to the section above, resulted in the same usable data as the 

analysis reported in the main text (Table S9), see corresponding section in Results. 

No exclusions: 

1)​ Identical condition vs. Baseline 

There was no significant difference between Baseline and Identical condition overall or 

age-related differences in (Mean of Identical vs. Baseline: 0.59 vs. 0.57; B = 0.02, t = 0.61, SE = 

0.03, p = .543), which is similar to the main text (Mean of Identical vs. Baseline: 0.59 vs. 0.55; B 

= 0.04, t = 1.61, SE = 0.03, p = .108). This analysis confirms that the exclusion criteria did not 

have an undue influence on the primary findings, which is that individuals judge risk similarly 

when it stands to benefit oneself only, and oneself and one’s friend. 

2)​ Opposite condition vs. Baseline 

Overall, participants were more risk seeking for themselves in the Opposite condition (Mean 

of Opposite vs. Baseline: 0.69 vs. 0.57; B = 0.12, t = 3.53, SE = 0.03, p < .001), leading to the 

same inference as the primary analysis (Mean of Opposite vs. Baseline: 0.69 vs. 0.55; B = 0.14, t 

= 5.25, SE = 0.03, p <. 001). Unlike our primary analysis where we found significant age-related 

differences between age 12.3-15.1 years, we only found significant age-related difference 

between age 13.7-14.1 years with no exclusions (Figure S7). However, visualizing the raw data 

(Figure S8) revealed that the one participant that was excluded in the primary analysis but 

included here is an outlier with a theoretically impossible Alpha. Therefore, this result does not 

warrant alterations to our primary inferences drawn from our primary analysis.   
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Figure S7. Age-related patterns of risk seeking: Difference of fit estimates of the GAM model. 
Positive values indicate risk seeking is greater at Opposite than Baseline, negative values indicate 
the reverse, and 0 indicates risk seeking is equivalent across the conditions. Shaded area 
represents 95% simultaneous Cis. Dotted red lines show that between ages 13.7-14.1 years, the 
95% simultaneous CIs do not include 0, indicating significant age-related changes. 
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Figure S8. (A) scatterplot of raw data in Baseline in primary analysis vs. with no exclusion. (B) 
scatterplot of raw data in Baseline and Opposite in primary analysis vs. with no exclusion.  
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C.​ Age-Related shifts in risky choices evoked by friend observation in Identical and 

Opposite contexts 

Table S10. Number of participants for Observed and Unobserved Identical conditions under 
different exclusion criteria based on Alpha. 
Exclusion based on Alpha Identical 

Observed Unobserved 

No exclusion 114 114 

Exclude Alpha > 3.32 

(Primary Analysis) 

113 111 

Exclude Alpha > 2 111 110 

 

Because all three exclusion criteria resulted in different datasets (Table S10), we fit our 

statistical models with two preregistered thresholds for model-based exclusion on Alpha: one 

with no exclusion, and the other excluding participants with Alpha > 2. 

1)​ No exclusions 

Unlike our primary analysis where we found participants more risk seeking in the Observed 

Identical condition than in the Unobserved Identical condition (Mean of Observed Identical vs. 

Unobserved Identical: 1.04 vs. 0.94; B = 0.10, t = 2.65, SE = 0.04, p = .008), we did not find this 

effect with no exclusions (Mean of Observed Identical vs. Unobserved Identical: 1.06 vs. 1.01; B 

= 0.05, t = 0.97, SE = 0.05, p = .331). However, visualizing the raw data (Figure S9) revealed that 

the 4 participants that were excluded in the primary analysis but included here are outliers with 

theoretically impossible values at the upper bound of the aforementioned slightly widened range 

for Alpha recovery, making these data points unreliable. Therefore, this result does not warrant 

alternations for our primary inferences drawn from our primary analysis.  
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Figure S9. Scatterplot of raw data in Observed Identical and Unobserved Identical in primary 
analysis vs. with no exclusions.  
 

There was no difference between Observed Opposite condition and Unobserved Opposite 

condition (Mean of Observed Opposite vs. Unobserved Opposite: 0.69 vs. 0.69; B = -0.001, t = 

-0.023, SE = 0.05, p = .982), leading to the same inference as the primary analysis (Mean of 

Observed Opposite vs. Unobserved Opposite: 0.69 vs. 0.69; B = -0.001, t = -0.04, SE = 0.04, p = 

.971). There were no age-related differences between Observed and Unobserved in both Identical 

and Opposite conditions, as was the case in the primary analysis. 

2)​ Excluding Alpha > 2 

Overall, participants were more risk seeking in the Observed Identical condition than in the 

Unobserved Identical condition (Mean of Observed Identical vs. Unobserved Identical: 1.01 vs. 

0.93; B = 0.08, t = 2.31, SE = 0.03, p = .022), leading to the same inference as the primary 

analysis (Mean of Observed Identical vs. Unobserved Identical: 1.04 vs. 0.94; B = 0.10, t = 2.65, 

SE = 0.04, p = .008). There was no difference between Observed Opposite condition and 

Unobserved Opposite condition (Mean of Observed Opposite vs. Unobserved Opposite: 0.69 vs. 

0.69; B = 0.002, t = 0.062, SE = 0.03, p = .951), leading to the same inference as the primary 

analysis (Mean of Observed Opposite vs. Unobserved Opposite: 0.69 vs. 0.69; B = -0.001, t = 

-0.04, SE = 0.04, p = .971). There were no age-related differences between Observed and 

Unobserved in both Identical and Opposite conditions, as was the case in the primary analysis. 

 

Conclusion 
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These sensitivity analyses confirm that our exclusion criteria did not have undue influence on 

the primary findings. 

​ ​ ​ ​ ​ ​ ​ ​  
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